These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28900108)

  • 1. Nanograin size effects on the strength of biphase nanolayered composites.
    Huang S; Beyerlein IJ; Zhou C
    Sci Rep; 2017 Sep; 7(1):11251. PubMed ID: 28900108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu-graphene nanolayered composites under shear loading.
    Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2018 Sep; 20(36):23694-23701. PubMed ID: 30191248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites.
    Ma Y; Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2020 Feb; 22(8):4741-4748. PubMed ID: 32057046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusually high flexibility of graphene-Cu nanolayered composites under bending.
    Zhao Y; Liu X; Zhu J; Luo SN
    Phys Chem Chem Phys; 2019 Aug; 21(31):17393-17399. PubMed ID: 31359012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.
    Kim Y; Lee J; Yeom MS; Shin JW; Kim H; Cui Y; Kysar JW; Hone J; Jung Y; Jeon S; Han SM
    Nat Commun; 2013; 4():2114. PubMed ID: 23820590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of individual dislocation interaction processes with grain boundaries.
    Kondo S; Mitsuma T; Shibata N; Ikuhara Y
    Sci Adv; 2016 Nov; 2(11):e1501926. PubMed ID: 27847862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial anti-fatigue effect in graphene-copper nanolayered composites under cyclic shear loading.
    Liu X; Cai J; Luo SN
    Phys Chem Chem Phys; 2018 Mar; 20(11):7875-7884. PubMed ID: 29509205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite.
    Lee S; Ghaffarian H; Kim W; Lee T; Han SM; Ryu S; Oh SH
    Nano Lett; 2022 Jan; 22(1):188-195. PubMed ID: 34941273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong texture in nanograin bulk Nd-Fe-B magnets via slow plastic deformation at low temperatures.
    Wang F; Shen W; Fan J; Du J; Chen K; Liu JP
    Nanoscale; 2019 Mar; 11(13):6062-6071. PubMed ID: 30869731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental observations of stress-driven grain boundary migration.
    Rupert TJ; Gianola DS; Gan Y; Hemker KJ
    Science; 2009 Dec; 326(5960):1686-90. PubMed ID: 20019286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide.
    Azizi A; Zou X; Ercius P; Zhang Z; Elías AL; Perea-López N; Stone G; Terrones M; Yakobson BI; Alem N
    Nat Commun; 2014 Sep; 5():4867. PubMed ID: 25202857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical physics of grain-boundary engineering.
    McGarrity ES; Duxbury PM; Holm EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026102. PubMed ID: 15783373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified Model for Size-Dependent to Size-Independent Transition in Yield Strength of Crystalline Metallic Materials.
    Liu W; Liu Y; Cheng Y; Chen L; Yu L; Yi X; Duan H
    Phys Rev Lett; 2020 Jun; 124(23):235501. PubMed ID: 32603175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions.
    Li C; Habler G; Griffiths T; Rečnik A; Jeřábek P; Götze LC; Mangler C; Pennycook TJ; Meyer J; Abart R
    Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):466-480. PubMed ID: 30182934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical 3D Nanolayered Duplex-Phase Zr with High Strength, Strain Hardening, and Ductility.
    Zhang JW; Beyerlein IJ; Han WZ
    Phys Rev Lett; 2019 Jun; 122(25):255501. PubMed ID: 31347895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength.
    Li Y; Raabe D; Herbig M; Choi PP; Goto S; Kostka A; Yarita H; Borchers C; Kirchheim R
    Phys Rev Lett; 2014 Sep; 113(10):106104. PubMed ID: 25238372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear stress-driven refreshing capability of plastic deformation in nanolayered metals.
    Yan JW; Zhu XF; Yang B; Zhang GP
    Phys Rev Lett; 2013 Apr; 110(15):155502. PubMed ID: 25167284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency.
    Uberuaga BP; Vernon LJ; Martinez E; Voter AF
    Sci Rep; 2015 Mar; 5():9095. PubMed ID: 25766999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.