These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28900124)

  • 1. Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes).
    Yeh YC; Kinoshita M; Ng TH; Chang YH; Maekawa S; Chiang YA; Aoki T; Wang HC
    Sci Rep; 2017 Sep; 7(1):11435. PubMed ID: 28900124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system.
    Chiang YA; Kinoshita M; Maekawa S; Kulkarni A; Lo CF; Yoshiura Y; Wang HC; Aoki T
    Fish Shellfish Immunol; 2016 Jan; 48():212-20. PubMed ID: 26578247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myostatin-deficient medaka exhibit a double-muscling phenotype with hyperplasia and hypertrophy, which occur sequentially during post-hatch development.
    Chisada SI; Okamoto H; Taniguchi Y; Kimori Y; Toyoda A; Sakaki Y; Takeda S; Yoshiura Y
    Dev Biol; 2011 Nov; 359(1):82-94. PubMed ID: 21925159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes).
    Sawatari E; Seki R; Adachi T; Hashimoto H; Uji S; Wakamatsu Y; Nakata T; Kinoshita M
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):183-9. PubMed ID: 19883781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9.
    Fang J; Chen T; Pan Q; Wang Q
    J Exp Zool B Mol Dev Evol; 2018 Jun; 330(4):242-246. PubMed ID: 29873175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient gene editing in a medaka (
    Pan Q; Luo J; Jiang Y; Wang Z; Lu K; Chen T
    J Zhejiang Univ Sci B; 2022 Jan; 23(1):74-83. PubMed ID: 35029089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Propagation and phenotypic analysis of mutant rabbits with
    Shang L; Song S; Zhang T; Yan K; Cai H; Yuan Y; Cheng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 May; 38(5):1847-1858. PubMed ID: 35611733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs.
    Li R; Zeng W; Ma M; Wei Z; Liu H; Liu X; Wang M; Shi X; Zeng J; Yang L; Mo D; Liu X; Chen Y; He Z
    Transgenic Res; 2020 Feb; 29(1):149-163. PubMed ID: 31927726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.
    Zhang J; Liu J; Yang W; Cui M; Dai B; Dong Y; Yang J; Zhang X; Liu D; Liang H; Cang M
    Theriogenology; 2019 Jul; 132():1-11. PubMed ID: 30981084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System.
    Khalil K; Elayat M; Khalifa E; Daghash S; Elaswad A; Miller M; Abdelrahman H; Ye Z; Odin R; Drescher D; Vo K; Gosh K; Bugg W; Robinson D; Dunham R
    Sci Rep; 2017 Aug; 7(1):7301. PubMed ID: 28779173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9.
    Lv Q; Yuan L; Deng J; Chen M; Wang Y; Zeng J; Li Z; Lai L
    Sci Rep; 2016 Apr; 6():25029. PubMed ID: 27113799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus.
    Zhang J; Cui ML; Nie YW; Dai B; Li FR; Liu DJ; Liang H; Cang M
    FEBS J; 2018 Aug; 285(15):2828-2839. PubMed ID: 29802684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality.
    Zhou S; Kalds P; Luo Q; Sun K; Zhao X; Gao Y; Cai B; Huang S; Kou Q; Petersen B; Chen Y; Ma B; Wang X
    BMC Genomics; 2022 May; 23(1):348. PubMed ID: 35524183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.
    Crispo M; Mulet AP; Tesson L; Barrera N; Cuadro F; dos Santos-Neto PC; Nguyen TH; Crénéguy A; Brusselle L; Anegón I; Menchaca A
    PLoS One; 2015; 10(8):e0136690. PubMed ID: 26305800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myostatin site-directed mutation and simultaneous PPARγ site-directed knockin in bovine genome.
    Ge L; Kang J; Dong X; Luan D; Su G; Li G; Zhang Y; Quan F
    J Cell Physiol; 2021 Apr; 236(4):2592-2605. PubMed ID: 32841375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats.
    He Z; Zhang T; Jiang L; Zhou M; Wu D; Mei J; Cheng Y
    Biosci Rep; 2018 Dec; 38(6):. PubMed ID: 30201688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method.
    Wei YY; Zhan QM; Zhu XX; Yan AF; Feng J; Liu L; Li JH; Tang DS
    Biotechnol Lett; 2020 Nov; 42(11):2091-2109. PubMed ID: 32494996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle Hyperplasia in Japanese Quail by Single Amino Acid Deletion in MSTN Propeptide.
    Lee J; Kim DH; Lee K
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association Between Muscle Growth and Transcription of a Mutant MSTN Gene in Olive Flounder (Paralichthys olivaceus).
    Kim JW; Kim J; Cho JY; Shin Y; Son H; Sathiyamoorthy S; Kim BS; Kim YO; Kang BC; Kong HJ
    Mar Biotechnol (NY); 2024 Jun; 26(3):599-608. PubMed ID: 38683458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach.
    Seleit A; Aulehla A; Paix A
    Elife; 2021 Dec; 10():. PubMed ID: 34870593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.