These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28900467)

  • 1. Products of Compartmental Models in Epidemiology.
    Worden L; Porco TC
    Comput Math Methods Med; 2017; 2017():8613878. PubMed ID: 28900467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring and prediction of an epidemic outbreak using syndromic observations.
    Skvortsov A; Ristic B
    Math Biosci; 2012 Nov; 240(1):12-9. PubMed ID: 22705339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model.
    Kong L; Wang J; Han W; Cao Z
    Int J Environ Res Public Health; 2016 Feb; 13(3):. PubMed ID: 26927140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When individual behaviour matters: homogeneous and network models in epidemiology.
    Bansal S; Grenfell BT; Meyers LA
    J R Soc Interface; 2007 Oct; 4(16):879-91. PubMed ID: 17640863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.
    van den Driessche P; Watmough J
    Math Biosci; 2002; 180():29-48. PubMed ID: 12387915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations.
    Hyman JM; Li J
    Math Biosci; 2000 Sep; 167(1):65-86. PubMed ID: 10942787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact epidemic models on graphs using graph-automorphism driven lumping.
    Simon PL; Taylor M; Kiss IZ
    J Math Biol; 2011 Apr; 62(4):479-508. PubMed ID: 20425114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic solutions to compartmental models of the HIV/AIDS epidemic.
    Griffiths J; England T; Williams J
    IMA J Math Appl Med Biol; 2000 Dec; 17(4):295-310. PubMed ID: 11270746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission.
    Korobeinikov A
    Bull Math Biol; 2006 Apr; 68(3):615-26. PubMed ID: 16794947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemics in networks of spatially correlated three-dimensional root-branching structures.
    Handford TP; Pérez-Reche FJ; Taraskin SN; Costa Lda F; Miazaki M; Neri FM; Gilligan CA
    J R Soc Interface; 2011 Mar; 8(56):423-34. PubMed ID: 20667844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lyapunov functions and global properties for SEIR and SEIS epidemic models.
    Korobeinikov A
    Math Med Biol; 2004 Jun; 21(2):75-83. PubMed ID: 15228100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching from a mechanistic model to a continuous model to study at different scales the effect of vine growth on the dynamic of a powdery mildew epidemic.
    Burie JB; Langlais M; Calonnec A
    Ann Bot; 2011 Apr; 107(5):885-95. PubMed ID: 21127356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk stratification in compartmental epidemic models: Where to draw the line?
    Suen SC; Goldhaber-Fiebert JD; Brandeau ML
    J Theor Biol; 2017 Sep; 428():1-17. PubMed ID: 28606751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using compartmental models to simulate directed acyclic graphs to explore competing causal mechanisms underlying epidemiological study data.
    Havumaki J; Eisenberg MC
    J R Soc Interface; 2020 Jun; 17(167):20190675. PubMed ID: 32574536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic procedure for incorporating separable static heterogeneity into compartmental epidemic models.
    Diekmann O; Inaba H
    J Math Biol; 2023 Jan; 86(2):29. PubMed ID: 36637527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study.
    Viguerie A; Veneziani A; Lorenzo G; Baroli D; Aretz-Nellesen N; Patton A; Yankeelov TE; Reali A; Hughes TJR; Auricchio F
    Comput Mech; 2020; 66(5):1131-1152. PubMed ID: 32836602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characteristics of epidemics and invasions with thresholds.
    Cruickshank I; Gurney WS; Veitch AR
    Theor Popul Biol; 1999 Dec; 56(3):279-92. PubMed ID: 10607521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model.
    Inaba H
    J Math Biol; 2007 Jan; 54(1):101-46. PubMed ID: 17058079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Percolation on heterogeneous networks as a model for epidemics.
    Sander LM; Warren CP; Sokolov IM; Simon C; Koopman J
    Math Biosci; 2002; 180():293-305. PubMed ID: 12387929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.