These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 28900732)
1. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense. Arya P; Acharya V Mol Genet Genomics; 2018 Feb; 293(1):17-31. PubMed ID: 28900732 [TBL] [Abstract][Full Text] [Related]
2. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. Leipe DD; Koonin EV; Aravind L J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417 [TBL] [Abstract][Full Text] [Related]
3. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants. Arya P; Acharya V PLoS One; 2016; 11(3):e0150634. PubMed ID: 26930396 [TBL] [Abstract][Full Text] [Related]
4. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Urbach JM; Ausubel FM Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1063-1068. PubMed ID: 28096345 [TBL] [Abstract][Full Text] [Related]
5. A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain. Aravind L; Iyer LM; Leipe DD; Koonin EV Genome Biol; 2004; 5(5):R30. PubMed ID: 15128444 [TBL] [Abstract][Full Text] [Related]
6. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation. Gangwar D; Kalita MK; Gupta D; Chauhan VS; Mohmmed A Malar J; 2009 Apr; 8():69. PubMed ID: 19374766 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae. Arya P; Kumar G; Acharya V; Singh AK PLoS One; 2014; 9(9):e107987. PubMed ID: 25232838 [TBL] [Abstract][Full Text] [Related]
8. Evolution of plant NBS encoding disease resistance genes. Sha L Yi Chuan; 2014 Dec; 36(12):1219-25. PubMed ID: 25487266 [TBL] [Abstract][Full Text] [Related]
10. A Distinct Motif in a Prokaryotic Small Ras-Like GTPase Highlights Unifying Features of Walker B Motifs in P-Loop NTPases. Kanade M; Chakraborty S; Shelke SS; Gayathri P J Mol Biol; 2020 Sep; 432(20):5544-5564. PubMed ID: 32750390 [TBL] [Abstract][Full Text] [Related]
11. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Yaish MW; Sáenz de Miera LE; Pérez de la Vega M Genome; 2004 Aug; 47(4):650-9. PubMed ID: 15284869 [TBL] [Abstract][Full Text] [Related]
12. The Diversification of Plant NBS-LRR Defense Genes Directs the Evolution of MicroRNAs That Target Them. Zhang Y; Xia R; Kuang H; Meyers BC Mol Biol Evol; 2016 Oct; 33(10):2692-705. PubMed ID: 27512116 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary meta-analysis of solanaceous resistance gene and solanum resistance gene analog sequences and a practical framework for cross-species comparisons. Quirin EA; Mann H; Meyer RS; Traini A; Chiusano ML; Litt A; Bradeen JM Mol Plant Microbe Interact; 2012 May; 25(5):603-12. PubMed ID: 22352721 [TBL] [Abstract][Full Text] [Related]
14. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. Cheng Y; Li X; Jiang H; Ma W; Miao W; Yamada T; Zhang M FEBS J; 2012 Jul; 279(13):2431-43. PubMed ID: 22564701 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Zhou T; Wang Y; Chen JQ; Araki H; Jing Z; Jiang K; Shen J; Tian D Mol Genet Genomics; 2004 May; 271(4):402-15. PubMed ID: 15014983 [TBL] [Abstract][Full Text] [Related]
16. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Leister D Trends Genet; 2004 Mar; 20(3):116-22. PubMed ID: 15049302 [TBL] [Abstract][Full Text] [Related]
17. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. Zheng F; Wu H; Zhang R; Li S; He W; Wong FL; Li G; Zhao S; Lam HM BMC Genomics; 2016 May; 17():402. PubMed ID: 27229309 [TBL] [Abstract][Full Text] [Related]
18. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. Yue JX; Meyers BC; Chen JQ; Tian D; Yang S New Phytol; 2012 Mar; 193(4):1049-1063. PubMed ID: 22212278 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary history and higher order classification of AAA+ ATPases. Iyer LM; Leipe DD; Koonin EV; Aravind L J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234 [TBL] [Abstract][Full Text] [Related]
20. Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Sood A; Jaiswal V; Chanumolu SK; Malhotra N; Pal T; Chauhan RS Mol Biol Rep; 2014 Nov; 41(11):7683-95. PubMed ID: 25106526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]