BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 28900751)

  • 1. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.
    Ash C; Dubec M; Donne K; Bashford T
    Lasers Med Sci; 2017 Nov; 32(8):1909-1918. PubMed ID: 28900751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Beam Spot Size in Heating Targets at Depth.
    Ross EV; Childs J
    J Drugs Dermatol; 2015 Dec; 14(12):1437-42. PubMed ID: 26659937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams.
    Keijzer M; Jacques SL; Prahl SA; Welch AJ
    Lasers Surg Med; 1989; 9(2):148-54. PubMed ID: 2716459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements.
    Scott AJ; Nahum AE; Fenwick JD
    Med Phys; 2009 Jul; 36(7):3132-44. PubMed ID: 19673212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of focused and multibeam laser energy in biological tissue.
    Fowler AJ; Menguc MP
    J Biomech Eng; 2000 Oct; 122(5):534-40. PubMed ID: 11091957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the distribution of laser light in port-wine stains with the Monte Carlo method.
    Smithies DJ; Butler PH
    Phys Med Biol; 1995 May; 40(5):701-31. PubMed ID: 7652003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.
    Nasouri B; Murphy TE; Berberoglu H
    J Biomed Opt; 2014; 19(7):075003. PubMed ID: 25003752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media.
    Carp SA; Prahl SA; Venugopalan V
    J Biomed Opt; 2004; 9(3):632-47. PubMed ID: 15189103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling optical fluence and diffuse reflectance distribution in normal and cancerous breast tissues exposed to planar and Gaussian NIR beam shapes using Monte Carlo simulation.
    Hassan NI; Hassan YM; Mustafa TA; Hamdy O
    Lasers Med Sci; 2023 Apr; 38(1):96. PubMed ID: 37004565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Dosimetry at Tissue Surfaces for Small Circular Fields.
    Zhu TC; Dimofte A; Hahn SM; Lustig RA
    Proc SPIE Int Soc Opt Eng; 2003 Jun; 4952():56-67. PubMed ID: 26146441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory.
    Flock ST; Patterson MS; Wilson BC; Wyman DR
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1162-8. PubMed ID: 2606490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams.
    Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H
    Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in tissue optical parameters with the incident power of an infrared laser.
    Hamdy O; Mohammed HS
    PLoS One; 2022; 17(1):e0263164. PubMed ID: 35100314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth Penetration of Light into Skin as a Function of Wavelength from 200 to 1000 nm.
    Finlayson L; Barnard IRM; McMillan L; Ibbotson SH; Brown CTA; Eadie E; Wood K
    Photochem Photobiol; 2022 Jul; 98(4):974-981. PubMed ID: 34699624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of elliptical sources in BEAMnrc Monte Carlo system: implementation and application.
    Kim S
    Med Phys; 2009 Apr; 36(4):1046-52. PubMed ID: 19472609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.
    van Staveren HJ; Keijzer M; Keesmaat T; Jansen H; Kirkel WJ; Beek JF; Star WM
    Phys Med Biol; 1996 Apr; 41(4):579-90. PubMed ID: 8730658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy.
    Fix MK; Keller H; Rüegsegger P; Born EJ
    Med Phys; 2000 Dec; 27(12):2739-47. PubMed ID: 11190957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.