These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28900782)

  • 1. Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks.
    Lai AKM; Arnold AS; Wakeling JM
    Ann Biomed Eng; 2017 Dec; 45(12):2762-2774. PubMed ID: 28900782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electromyography and joint moment as indicators of co-contraction.
    Knarr BA; Zeni JA; Higginson JS
    J Electromyogr Kinesiol; 2012 Aug; 22(4):607-11. PubMed ID: 22382273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
    Fox MD; Delp SL
    J Biomech; 2010 May; 43(8):1450-5. PubMed ID: 20236644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 May; 45(8):1406-13. PubMed ID: 22405495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP; Kinney AL; Banks SA; D'Lima DD; Besier TF; Lloyd DG; Fregly BJ
    J Biomech Eng; 2014 Feb; 136(2):021031. PubMed ID: 24402438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.
    Wesseling M; de Groote F; Jonkers I
    J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the lower limb for analysis of human movement.
    Arnold EM; Ward SR; Lieber RL; Delp SL
    Ann Biomed Eng; 2010 Feb; 38(2):269-79. PubMed ID: 19957039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control.
    Holzbaur KR; Murray WM; Delp SL
    Ann Biomed Eng; 2005 Jun; 33(6):829-40. PubMed ID: 16078622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromechanical control of locomotion in the rat.
    Thota AK; Watson SC; Knapp E; Thompson B; Jung R
    J Neurotrauma; 2005 Apr; 22(4):442-65. PubMed ID: 15853462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of musculoskeletal loadings in lower limbs during stilts walking in occupational activity.
    Wu JZ; Chiou SS; Pan CS
    Ann Biomed Eng; 2009 Jun; 37(6):1177-89. PubMed ID: 19296222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.