These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28901274)

  • 1. Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts.
    Zhang C; Too HP
    Curr Med Chem; 2019; 26(14):2475-2484. PubMed ID: 28901274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered microbial host selection for value-added bioproducts from lignocellulose.
    de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN
    Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose.
    Mazzoli R; Olson DG
    Adv Appl Microbiol; 2020; 113():111-161. PubMed ID: 32948265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis.
    Weng C; Peng X; Han Y
    Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.
    Moreno AD; Ibarra D; Alvira P; Tomás-Pejó E; Ballesteros M
    Crit Rev Biotechnol; 2015; 35(3):342-54. PubMed ID: 24506661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The White-Rot Basidiomycete
    Kowalczyk JE; Peng M; Pawlowski M; Lipzen A; Ng V; Singan V; Wang M; Grigoriev IV; Mäkelä MR
    Front Bioeng Biotechnol; 2019; 7():229. PubMed ID: 31616664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.
    Gupta VK; Kubicek CP; Berrin JG; Wilson DW; Couturier M; Berlin A; Filho EXF; Ezeji T
    Trends Biochem Sci; 2016 Jul; 41(7):633-645. PubMed ID: 27211037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects.
    Liu G; Qu Y
    Biotechnol Adv; 2019; 37(4):519-529. PubMed ID: 30576717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata.
    Mäkinen MA; Risulainen N; Mattila H; Lundell TK
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5657-5672. PubMed ID: 29728725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.
    Yu C; Simmons BA; Singer SW; Thelen MP; VanderGheynst JS
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10237-10249. PubMed ID: 27838839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.
    Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC
    Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic conversion of lignocellulose to platform chemicals.
    Jäger G; Büchs J
    Biotechnol J; 2012 Sep; 7(9):1122-36. PubMed ID: 22829529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-degrading enzymes.
    Pollegioni L; Tonin F; Rosini E
    FEBS J; 2015 Apr; 282(7):1190-213. PubMed ID: 25649492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.
    Chandel AK; Gonçalves BC; Strap JL; da Silva SS
    Crit Rev Biotechnol; 2015; 35(3):281-93. PubMed ID: 24156399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species.
    Mattila H; Kuuskeri J; Lundell T
    Bioresour Technol; 2017 Feb; 225():254-261. PubMed ID: 27898315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli for biofuel production: bridging the gap from promise to practice.
    Huffer S; Roche CM; Blanch HW; Clark DS
    Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.
    Zhang YP
    J Ind Microbiol Biotechnol; 2008 May; 35(5):367-375. PubMed ID: 18180967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature-inspired pretreatment of lignocellulose - Perspective and development.
    Chen S; Davaritouchaee M
    Bioresour Technol; 2023 Feb; 369():128456. PubMed ID: 36503090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.