BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28901362)

  • 1. What do we actually see in intracellular SERS? Investigating nanosensor-induced variation.
    Taylor J; Milton J; Willett M; Wingfield J; Mahajan S
    Faraday Discuss; 2017 Dec; 205():409-428. PubMed ID: 28901362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal.
    Chakraborty A; Das A; Raha S; Barui A
    J Photochem Photobiol B; 2020 Jan; 203():111778. PubMed ID: 31931389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors.
    Cao Y; Li DW; Zhao LJ; Liu XY; Cao XM; Long YT
    Anal Chem; 2015 Oct; 87(19):9696-701. PubMed ID: 26324383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective and sensitive detection of intracellular O2(•-) using Au NPs/cytochrome c as SERS nanosensors.
    Qu LL; Li DW; Qin LX; Mu J; Fossey JS; Long YT
    Anal Chem; 2013 Oct; 85(20):9549-55. PubMed ID: 24047198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics.
    Huefner A; Kuan WL; Müller KH; Skepper JN; Barker RA; Mahajan S
    ACS Nano; 2016 Jan; 10(1):307-16. PubMed ID: 26649752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells.
    Kumar S; Kumar A; Kim GH; Rhim WK; Hartman KL; Nam JM
    Small; 2017 Nov; 13(43):. PubMed ID: 28902980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry.
    Bhamidipati M; Fabris L
    Bioconjug Chem; 2017 Feb; 28(2):449-460. PubMed ID: 27992181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids.
    Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W
    Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular SERS hybrid probes using BSA-reporter conjugates.
    Hornemann A; Drescher D; Flemig S; Kneipp J
    Anal Bioanal Chem; 2013 Jul; 405(19):6209-22. PubMed ID: 23715676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering.
    Altunbek M; Kuku G; Culha M
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27897986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles.
    Verde A; Mangini M; Managò S; Tramontano C; Rea I; Boraschi D; Italiani P; De Luca AC
    Front Immunol; 2021; 12():758410. PubMed ID: 34691081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues.
    Hu Y; Cheng H; Zhao X; Wu J; Muhammad F; Lin S; He J; Zhou L; Zhang C; Deng Y; Wang P; Zhou Z; Nie S; Wei H
    ACS Nano; 2017 Jun; 11(6):5558-5566. PubMed ID: 28549217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes.
    Huefner A; Septiadi D; Wilts BD; Patel II; Kuan WL; Fragniere A; Barker RA; Mahajan S
    Methods; 2014 Jul; 68(2):354-63. PubMed ID: 24583117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies.
    Blakey I; Schiller TL; Merican Z; Fredericks PM
    Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy.
    Wuytens PC; Subramanian AZ; De Vos WH; Skirtach AG; Baets R
    Analyst; 2015 Dec; 140(24):8080-7. PubMed ID: 26438890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.