These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28901588)

  • 1. Graphene in the Design and Engineering of Next-Generation Neural Interfaces.
    Kostarelos K; Vincent M; Hebert C; Garrido JA
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28901588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors.
    Veliev F; Han Z; Kalita D; Briançon-Marjollet A; Bouchiat V; Delacour C
    Front Neurosci; 2017; 11():466. PubMed ID: 28894412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-based neural electrodes: promises and challenges.
    Devi M; Vomero M; Fuhrer E; Castagnola E; Gueli C; Nimbalkar S; Hirabayashi M; Kassegne S; Stieglitz T; Sharma S
    J Neural Eng; 2021 Sep; 18(4):. PubMed ID: 34404037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel bioelectronics.
    Yuk H; Lu B; Zhao X
    Chem Soc Rev; 2019 Mar; 48(6):1642-1667. PubMed ID: 30474663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated Polymers in Bioelectronics.
    Inal S; Rivnay J; Suiu AO; Malliaras GG; McCulloch I
    Acc Chem Res; 2018 Jun; 51(6):1368-1376. PubMed ID: 29874033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond.
    Ranke D; Lee I; Gershanok SA; Jo S; Trotto E; Wang Y; Balakrishnan G; Cohen-Karni T
    Acc Chem Res; 2024 Jul; 57(13):1803-1814. PubMed ID: 38859612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Nano Neuroscience: From Nanomaterials to Nanotools.
    Pampaloni NP; Giugliano M; Scaini D; Ballerini L; Rauti R
    Front Neurosci; 2018; 12():953. PubMed ID: 30697140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic bioelectronics in medicine.
    Löffler S; Melican K; Nilsson KPR; Richter-Dahlfors A
    J Intern Med; 2017 Jul; 282(1):24-36. PubMed ID: 28181720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems.
    Cho J; Seong G; Chang Y; Kim C
    Front Neurosci; 2021; 15():667447. PubMed ID: 34135727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene nanostructures for input-output bioelectronics.
    Garg R; Roman DS; Wang Y; Cohen-Karni D; Cohen-Karni T
    Biophys Rev (Melville); 2021 Dec; 2(4):041304. PubMed ID: 35005709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft Neural Interfacing based on Implantable Graphene Fiber Microelectrode Arrays.
    Alsadat Hejazi M; Seyedi SA; Mehdizadeh A
    J Biomed Phys Eng; 2023 Dec; 13(6):573-576. PubMed ID: 38148964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics.
    Go GT; Lee Y; Seo DG; Lee TW
    Adv Mater; 2022 Nov; 34(45):e2201864. PubMed ID: 35925610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
    Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Materials, Devices, and Systems for Neural Interfaces.
    Won SM; Song E; Zhao J; Li J; Rivnay J; Rogers JA
    Adv Mater; 2018 Jul; 30(30):e1800534. PubMed ID: 29855089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated nerve-electrode interfaces in neural prosthetics and neural engineering.
    Song YA; Ibrahim AM; Rabie AN; Han J; Lin SJ
    Biotechnol Genet Eng Rev; 2013; 29():113-34. PubMed ID: 24568276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems.
    Cutrone A; Micera S
    Adv Healthc Mater; 2019 Dec; 8(24):e1801345. PubMed ID: 31763784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of graphene and related two-dimensional materials for bioelectronics devices.
    Zhang T; Liu J; Wang C; Leng X; Xiao Y; Fu L
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):28-42. PubMed ID: 27396820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.