BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 28901616)

  • 1. Regularization of nonlinear decomposition of spectral x-ray projection images.
    Ducros N; Abascal JFP; Sixou B; Rit S; Peyrin F
    Med Phys; 2017 Sep; 44(9):e174-e187. PubMed ID: 28901616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constrained one-step material decomposition reconstruction of head CT data from a silicon photon-counting prototype.
    Schmidt TG; Sidky EY; Pan X; Barber RF; Grönberg F; Sjölin M; Danielsson M
    Med Phys; 2023 Oct; 50(10):6008-6021. PubMed ID: 37523258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.
    Schmidt TG; Sammut BA; Barber RF; Pan X; Sidky EY
    Med Phys; 2022 May; 49(5):3021-3040. PubMed ID: 35318699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material decomposition with prior knowledge aware iterative denoising (MD-PKAID).
    Tao S; Rajendran K; McCollough CH; Leng S
    Phys Med Biol; 2018 Sep; 63(19):195003. PubMed ID: 30136655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
    Shikhaliev PM
    Phys Med Biol; 2012 Mar; 57(6):1595-615. PubMed ID: 22398007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.
    Zhao W; Vernekohl D; Han F; Han B; Peng H; Yang Y; Xing L; Min JK
    Med Phys; 2018 Jul; 45(7):2964-2977. PubMed ID: 29679500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.
    Curtis TE; Roeder RK
    Med Phys; 2017 Oct; 44(10):5187-5197. PubMed ID: 28681402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image quality improvement of a one-step spectral CT reconstruction on a prototype photon-counting scanner.
    Rodesch PA; Si-Mohamed SA; Lesaint J; Douek PC; Rit S
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38041870
    [No Abstract]   [Full Text] [Related]  

  • 15. A model-based iterative reconstruction algorithm DIRA using patient-specific tissue classification via DECT for improved quantitative CT in dose planning.
    Malusek A; Magnusson M; Sandborg M; Alm Carlsson G
    Med Phys; 2017 Jun; 44(6):2345-2357. PubMed ID: 28369941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical image-domain multimaterial decomposition for dual-energy CT.
    Xue Y; Ruan R; Hu X; Kuang Y; Wang J; Long Y; Niu T
    Med Phys; 2017 Mar; 44(3):886-901. PubMed ID: 28060999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique.
    Nasirudin RA; Mei K; Penchev P; Fehringer A; Pfeiffer F; Rummeny EJ; Fiebich M; Noël PB
    PLoS One; 2015; 10(5):e0124831. PubMed ID: 25955019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Angiography Material Decomposition Using an Empirical Forward Model and a Dictionary-Based Regularization.
    Mechlem K; Sellerer T; Ehn S; Munzel D; Braig E; Herzen J; Noel PB; Pfeiffer F
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2298-2309. PubMed ID: 29993572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization.
    Harms J; Wang T; Petrongolo M; Niu T; Zhu L
    Med Phys; 2016 May; 43(5):2676. PubMed ID: 27147376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.