BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28901739)

  • 1. Back Electron Transfer at TiO
    Zhu H; Yan S; Li Z; Zou Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33887-33895. PubMed ID: 28901739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt-Nickel Layered Double Hydroxides Modified on TiO
    Chen W; Wang T; Xue J; Li S; Wang Z; Sun S
    Small; 2017 Mar; 13(10):. PubMed ID: 28026124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface State-Assisted Delayed Photocurrent Response of Au Nanocluster/TiO
    Abbas MA; Bang JH
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25409-25416. PubMed ID: 35608651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy.
    Zhang B; Zhang X; Xiao X; Shen Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly ordered TiO
    Wang H; Liang Y; Liu L; Hu J; Cui W
    J Hazard Mater; 2018 Feb; 344():369-380. PubMed ID: 29096250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting.
    Yang Y; Forster M; Ling Y; Wang G; Zhai T; Tong Y; Cowan AJ; Li Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3403-7. PubMed ID: 26847172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling effect between hole storage and interfacial charge transfer over ultrathin CoPi-modified hematite photoanodes.
    Wang P; Ding C; Li D; Cao Y; Li Z; Wang X; Shi J; Li C
    Dalton Trans; 2022 Jun; 51(24):9247-9255. PubMed ID: 35695236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous catalytic oxidation of As(III) on nonferrous metal oxides in the presence of H2O2.
    Kim DH; Bokare AD; Koo Ms; Choi W
    Environ Sci Technol; 2015 Mar; 49(6):3506-13. PubMed ID: 25695481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.
    Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS
    Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction.
    Yan P; Liu G; Ding C; Han H; Shi J; Gan Y; Li C
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3791-6. PubMed ID: 25621529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition.
    Zeng M; Peng X; Liao J; Wang G; Li Y; Li J; Qin Y; Wilson J; Song A; Lin S
    Phys Chem Chem Phys; 2016 Jun; 18(26):17404-13. PubMed ID: 27138558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galvanic cell reaction driven electrochemical doping of TiO
    Zhu H; Hu Y; Zhu K; Yan S; Lu L; Zhao M; Fu H; Li Z; Zou Z
    Chem Commun (Camb); 2018 Oct; 54(79):11116-11119. PubMed ID: 30175343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.
    Klotz D; Grave DA; Rothschild A
    Phys Chem Chem Phys; 2017 Aug; 19(31):20383-20392. PubMed ID: 28721404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of efficient CdS-TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes.
    Kalanur SS; Hwang YJ; Joo OS
    J Colloid Interface Sci; 2013 Jul; 402():94-9. PubMed ID: 23647694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge separation and photocurrent polarity-switching at CdS quantum dots assembly in polyelectrolyte interfaced with hole scavengers.
    El Harakeh M; Alawieh L; Saouma S; Halaoui LI
    Phys Chem Chem Phys; 2009 Jul; 11(28):5962-73. PubMed ID: 19588019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.