These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28902139)
1. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow. Demori M; Ferrari M; Bonzanini A; Poesio P; Ferrari V Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902139 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions. Wang L; Zhu D Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668 [TBL] [Abstract][Full Text] [Related]
3. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions. Roy S; Hua JC; Barnhill W; Gunaratne GH; Gord JR Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013001. PubMed ID: 25679702 [TBL] [Abstract][Full Text] [Related]
4. Dynamical-systems analysis and unstable periodic orbits in reacting flows behind symmetric bluff bodies. Hua JC; Gunaratne GH; Kostka S; Jiang N; Kiel BV; Gord JR; Roy S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033011. PubMed ID: 24125348 [TBL] [Abstract][Full Text] [Related]
5. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device. Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418 [TBL] [Abstract][Full Text] [Related]
6. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation. Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213 [TBL] [Abstract][Full Text] [Related]
7. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street. Free BA; Paley DA Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109 [TBL] [Abstract][Full Text] [Related]
8. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow. Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the Influence of the Vortex Shedder Shape on the Metrological Properties of the Vortex Flow Meter. Rzasa MR; Czapla-Nielacna B Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300437 [TBL] [Abstract][Full Text] [Related]
11. Fish Swimming in a Kármán Vortex Street: Kinematics, Sensory Biology and Energetics. Liao JC; Akanyeti O Mar Technol Soc J; 2017; 51(5):48-55. PubMed ID: 30631214 [TBL] [Abstract][Full Text] [Related]
12. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Lee YJ; Qi Y; Zhou G; Lua KB Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701 [TBL] [Abstract][Full Text] [Related]
13. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076 [TBL] [Abstract][Full Text] [Related]
14. Observation of von Kármán Vortex Street in an Atomic Superfluid Gas. Kwon WJ; Kim JH; Seo SW; Shin Y Phys Rev Lett; 2016 Dec; 117(24):245301. PubMed ID: 28009203 [TBL] [Abstract][Full Text] [Related]
15. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer. Salem S; Fraňa K Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154 [TBL] [Abstract][Full Text] [Related]
16. A model of the lateral line of fish for vortex sensing. Ren Z; Mohseni K Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366 [TBL] [Abstract][Full Text] [Related]
17. Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer. Islam M; Ali U; Mone S PLoS One; 2024; 19(6):e0304489. PubMed ID: 38857262 [TBL] [Abstract][Full Text] [Related]
18. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring. Panayanthatta N; Clementi G; Ouhabaz M; Costanza M; Margueron S; Bartasyte A; Basrour S; Bano E; Montes L; Dehollain C; La Rosa R Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833578 [TBL] [Abstract][Full Text] [Related]
19. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729 [TBL] [Abstract][Full Text] [Related]
20. Asynchronous control of vortex-induced acoustic cavity resonance using imbedded piezo-electric actuators. Zhang MM; Cheng L; Zhou Y J Acoust Soc Am; 2009 Jul; 126(1):36-45. PubMed ID: 19603860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]