These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28902139)
21. Piezoelectric diaphragm for vibration energy harvesting. Minazara E; Vasic D; Costa F; Poulin G Ultrasonics; 2006 Dec; 44 Suppl 1():e699-703. PubMed ID: 16814837 [TBL] [Abstract][Full Text] [Related]
22. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434 [TBL] [Abstract][Full Text] [Related]
23. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Giesecke A; Stefani F; Burguete J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066303. PubMed ID: 23368034 [TBL] [Abstract][Full Text] [Related]
24. Numerical simulation and experimental verification of a valveless piezoelectric pump based on heteromorphic symmetric bluff body. Jiang H; Hou Y; Hu R; Hu D; He L; Cheng G Rev Sci Instrum; 2022 Jun; 93(6):065005. PubMed ID: 35778023 [TBL] [Abstract][Full Text] [Related]
25. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network. Lee D Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953 [TBL] [Abstract][Full Text] [Related]
26. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations. Machu Z; Rubes O; Sevecek O; Hadas Z Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974 [TBL] [Abstract][Full Text] [Related]
27. Vortex Shedding Optical Flowmeter based on Photonic Crystal Fiber. Arumuru V; Dash JN; Dora D; Jha R Sci Rep; 2019 Jun; 9(1):8313. PubMed ID: 31165744 [TBL] [Abstract][Full Text] [Related]
28. Piezoelectric energy harvesting in internal fluid flow. Lee HJ; Sherrit S; Tosi LP; Walkemeyer P; Colonius T Sensors (Basel); 2015 Oct; 15(10):26039-62. PubMed ID: 26473879 [TBL] [Abstract][Full Text] [Related]
29. Hysteresis at low Reynolds number: onset of two-dimensional vortex shedding. Horvath VK; Cressman JR; Goldburg WI; Wu XL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):R4702-5. PubMed ID: 11031506 [TBL] [Abstract][Full Text] [Related]
30. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. Hu Y; Xue H; Hu T; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321 [TBL] [Abstract][Full Text] [Related]
31. What information do Kármán streets offer to flow sensing? Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492 [TBL] [Abstract][Full Text] [Related]
32. A Multi-Beam Shared-Inductor Reconfigurable Voltage/SECE Mode Piezoelectric Energy Harvesting Interface Circuit. Meng M; Wang D; Truong BD; Trolier-McKinstry S; Roundy S; Kiani M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1277-1287. PubMed ID: 31715569 [TBL] [Abstract][Full Text] [Related]
33. Power Management IC for a Dual-Input-Triple-Output Energy Harvester. Mui KM; Khaw MK; Mohd-Yasin F Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33076268 [TBL] [Abstract][Full Text] [Related]
35. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems. Brunelli D Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959018 [TBL] [Abstract][Full Text] [Related]
36. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Tiwari A IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909 [TBL] [Abstract][Full Text] [Related]
37. Elimination of vortex streets in bluff-body flows. Dong S; Triantafyllou GS; Karniadakis GE Phys Rev Lett; 2008 May; 100(20):204501. PubMed ID: 18518541 [TBL] [Abstract][Full Text] [Related]
38. A Miniaturized 0.78-mW/cm2 Autonomous Thermoelectric Energy-Harvesting Platform for Biomedical Sensors. Rozgic D; Markovic D IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):773-783. PubMed ID: 28541912 [TBL] [Abstract][Full Text] [Related]
39. Spontaneous symmetry breaking of a hinged flapping filament generates lift. Bagheri S; Mazzino A; Bottaro A Phys Rev Lett; 2012 Oct; 109(15):154502. PubMed ID: 23102315 [TBL] [Abstract][Full Text] [Related]
40. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting. Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]