These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28902193)

  • 21. Strong solvent-dependent preference of Δ and Λ stereoisomers of a tris(diamine)nickel(II) complex revealed by vibrational circular dichroism spectroscopy.
    Merten C; McDonald R; Xu Y
    Inorg Chem; 2014 Mar; 53(6):3177-82. PubMed ID: 24601562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water.
    Yang G; Xu Y
    J Chem Phys; 2009 Apr; 130(16):164506. PubMed ID: 19405593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chirality transfer through hydrogen-bonding: experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water.
    Losada M; Xu Y
    Phys Chem Chem Phys; 2007 Jun; 9(24):3127-35. PubMed ID: 17612736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mid-IR and CH stretching vibrational circular dichroism spectroscopy to distinguish various sources of chirality: The case of quinophaneoxazoline based ruthenium(II) complexes.
    Fusè M; Mazzeo G; Abbate S; Ruzziconi R; Bloino J; Longhi G
    Chirality; 2024 Mar; 36(3):e23649. PubMed ID: 38409881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. VCD spectroscopy as an excellent probe of chiral metal complexes containing a carbon monoxide vibrational chromophore.
    Fusè M; Mazzeo G; Longhi G; Abbate S; Zerla D; Rimoldi I; Contini A; Cesarotti E
    Chem Commun (Camb); 2015 Jun; 51(45):9385-7. PubMed ID: 25966832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new horizon for vibrational circular dichroism spectroscopy: a challenge for supramolecular chirality.
    Sato H
    Phys Chem Chem Phys; 2020 Apr; 22(15):7671-7679. PubMed ID: 32249874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of central metal ions on vibrational circular dichroism spectra of tris-(beta-diketonato)metal(III) complexes.
    Sato H; Taniguchi T; Nakahashi A; Monde K; Yamagishi A
    Inorg Chem; 2007 Aug; 46(16):6755-66. PubMed ID: 17625835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intercalation of a nonionic surfactant (C10E3) bilayer into a Na-montmorillonite clay.
    Guégan R
    Langmuir; 2010 Dec; 26(24):19175-80. PubMed ID: 21090819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational analysis and vibrational circular dichroism of tris(ethylenediamine)ruthenium(II) complex: a theoretical study.
    Pandith AH; Pati SK
    J Phys Chem A; 2010 Jan; 114(1):87-92. PubMed ID: 20000559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrational circular dichroism and chiroptical properties of chiral Ir(iii) luminescent complexes.
    Mazzeo G; Fusè M; Longhi G; Rimoldi I; Cesarotti E; Crispini A; Abbate S
    Dalton Trans; 2016 Jan; 45(3):992-9. PubMed ID: 26647994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.
    Lin Y; Zou F; Wan S; Ouyang J; Lin L; Zhang H
    Dalton Trans; 2012 Jun; 41(22):6696-706. PubMed ID: 22538249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Helical gold nanorods as chiral recognition nanostructures: a relativistic density functional theory study.
    Liu X; Hamilton IP
    J Am Chem Soc; 2014 Dec; 136(51):17757-61. PubMed ID: 25453899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism.
    Dolamic I; Varnholt B; Bürgi T
    Nat Commun; 2015 May; 6():7117. PubMed ID: 25960309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of vibrational circular dichroism spectra of (s)-(+)-2-butanol by rotational strengths expressed in local symmetry coordinates.
    Shin S; Nakata M; Hamada Y
    J Phys Chem A; 2006 Feb; 110(6):2122-9. PubMed ID: 16466246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A theoretical study of Ru(II) polypyridyl DNA intercalators structure and electronic absorption spectroscopy of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ complexes intercalated in guanine-cytosine base pairs.
    Ambrosek D; Loos PF; Assfeld X; Daniel C
    J Inorg Biochem; 2010 Sep; 104(9):893-901. PubMed ID: 20554006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State.
    Jähnigen S; Le Barbu-Debus K; Guillot R; Vuilleumier R; Zehnacker A
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202215599. PubMed ID: 36441537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induced chirality-at-metal and diastereoselectivity at Δ/Λ-configured distorted square-planar copper complexes by enantiopure Schiff base ligands: combined circular dichroism, DFT and X-ray structural studies.
    Enamullah M; Uddin AK; Pescitelli G; Berardozzi R; Makhloufi G; Vasylyeva V; Chamayou AC; Janiak C
    Dalton Trans; 2014 Feb; 43(8):3313-29. PubMed ID: 24366532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy.
    Stephens PJ; Devlin FJ; Pan JJ
    Chirality; 2008 May; 20(5):643-63. PubMed ID: 17955495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative vibrational CD study of homo- and heteroleptic complexes of the type [Cu(trans-1,2-diaminocyclohexane)2L](ClO4)2.
    Merten C; Xu Y
    Dalton Trans; 2013 Aug; 42(29):10572-8. PubMed ID: 23760656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.