BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28902429)

  • 1. Chirality sensing with stereodynamic copper(I) complexes.
    De Los Santos ZA; Legaux NM; Wolf C
    Chirality; 2017 Nov; 29(11):663-669. PubMed ID: 28902429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe.
    Bentley KW; Nam YG; Murphy JM; Wolf C
    J Am Chem Soc; 2013 Dec; 135(48):18052-5. PubMed ID: 24261969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality sensing with stereodynamic biphenolate zinc complexes.
    Bentley KW; de Los Santos ZA; Weiss MJ; Wolf C
    Chirality; 2015 Oct; 27(10):700-7. PubMed ID: 26299373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output.
    Wolf C; Bentley KW
    Chem Soc Rev; 2013 Jun; 42(12):5408-24. PubMed ID: 23482984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective sensing of chiral amino alcohols with a stereodynamic arylacetylene-based probe.
    Iwaniuk DP; Bentley KW; Wolf C
    Chirality; 2012 Jul; 24(7):584-9. PubMed ID: 22628254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Chirality Sensing with a Stereodynamic Aluminum Biphenolate Probe.
    De Los Santos ZA; Joyce LA; Sherer EC; Welch CJ; Wolf C
    J Org Chem; 2019 Apr; 84(8):4639-4645. PubMed ID: 30019902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular dichroism sensing of chiral compounds using an achiral metal complex as probe.
    Irfanoglu B; Wolf C
    Chirality; 2014 Aug; 26(8):379-84. PubMed ID: 24839183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures.
    Bentley KW; Zhang P; Wolf C
    Sci Adv; 2016 Feb; 2(2):e1501162. PubMed ID: 26933684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality Sensing of Cryptochiral Guests with Prism[n]arenes.
    Della Sala P; Calice U; Iuliano V; Geremia S; Hickey N; Belviso S; Summa FF; Monaco G; Gaeta C; Superchi S
    Chemistry; 2024 May; ():e202401625. PubMed ID: 38717117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Chirality Sensing with an Auxiliary-Free Earth-Abundant Cobalt Probe.
    De Los Santos ZA; Lynch CC; Wolf C
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1198-1202. PubMed ID: 30500091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative chirality sensing of amines and amino alcohols via Schiff base formation with a stereodynamic UV/CD probe.
    De Los Santos ZA; Ding R; Wolf C
    Org Biomol Chem; 2016 Feb; 14(6):1934-9. PubMed ID: 26765638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereochemical analysis of chiral amines, diamines, and amino alcohols: Practical chiroptical sensing based on dynamic covalent chemistry.
    Hassan DS; Thanzeel FY; Wolf C
    Chirality; 2020 Apr; 32(4):457-463. PubMed ID: 32027416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and circular dichroism studies of N,N-bis(2-quinolylmethyl)amino acid Cu(II) complexes: determination of absolute configuration and enantiomeric excess by the exciton coupling method.
    Holmes AE; Zahn S; Canary JW
    Chirality; 2002 Jun; 14(6):471-7. PubMed ID: 12112340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration-Independent Stereodynamic g-Probe for Chiroptical Enantiomeric Excess Determination.
    Zardi P; Wurst K; Licini G; Zonta C
    J Am Chem Soc; 2017 Nov; 139(44):15616-15619. PubMed ID: 29039937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taking advantage of Co(ii) induced enhanced VCD for the fast and sensitive determination of enantiomeric excess.
    Arrico L; Angelici G; Di Bari L
    Org Biomol Chem; 2017 Nov; 15(46):9800-9803. PubMed ID: 29159330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereodynamic chemosensor with selective circular dichroism and fluorescence readout for in situ determination of absolute configuration, enantiomeric excess, and concentration of chiral compounds.
    Bentley KW; Wolf C
    J Am Chem Soc; 2013 Aug; 135(33):12200-3. PubMed ID: 23909867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending substrate sensing capabilities of zinc tris(2-pyridylmethyl)amine-based stereodynamic probe.
    Scaramuzzo FA; Badetti E; Licini G; Zonta C
    Chirality; 2019 May; 31(5):375-383. PubMed ID: 30884553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral amplification with a stereodynamic triaryl probe: assignment of the absolute configuration and enantiomeric excess of amino alcohols.
    Ghosn MW; Wolf C
    J Am Chem Soc; 2009 Nov; 131(45):16360-1. PubMed ID: 19902975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimetallic Architectures from the Self-assembly of Amino Acids and Tris(2-pyridylmethyl)amine Zinc(II) Complexes: Circular Dichroism Enhancement by Chromophores Organization.
    Badetti E; Wurst K; Licini G; Zonta C
    Chemistry; 2016 May; 22(19):6515-8. PubMed ID: 26888188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.