These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28902429)

  • 21. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.
    Miyake H; Terada K; Tsukube H
    Chirality; 2014 Jun; 26(6):293-9. PubMed ID: 24733785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimetic Chirality Sensing with Pyridoxal-5'-phosphate.
    Pilicer SL; Bakhshi PR; Bentley KW; Wolf C
    J Am Chem Soc; 2017 Feb; 139(5):1758-1761. PubMed ID: 28128945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive chirality sensing: development of stereodynamic probes with a dual (chir)optical response.
    Bentley KW; Wolf C
    J Org Chem; 2014 Jul; 79(14):6517-31. PubMed ID: 24936934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces.
    Liu S; Ma X; Song M; Ji CY; Song J; Ji Y; Ma S; Jiang J; Wu X; Li J; Liu M; Wang RY
    ACS Nano; 2021 Dec; 15(12):19535-19545. PubMed ID: 34797065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence detected circular dichroism (FDCD) of a stereodynamic probe.
    Penasa R; Begato F; Licini G; Wurst K; Abbate S; Longhi G; Zonta C
    Chem Commun (Camb); 2023 May; 59(44):6714-6717. PubMed ID: 37191071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiroptical Switching and Quantitative Chirality Sensing with (Pseudo)halogenated Quinones.
    Formen JSSK; Wolf C
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27031-27038. PubMed ID: 34679202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chiral Induction and Remote Chiral Communication in Quinoline Oligoamide Foldamers for Determination of Enantiomeric Excess and Absolute Configuration of Chiral Amines and Their Derivatives.
    Zheng L; Zhan Y; Ye L; Zheng D; Wang Y; Zhang K; Jiang H
    Chemistry; 2019 Nov; 25(62):14162-14168. PubMed ID: 31389064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circular Dichroism Sensing: Strategies and Applications.
    Formen JSSK; Howard JR; Anslyn EV; Wolf C
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202400767. PubMed ID: 38421186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chiroptical sensing of amino acids, amines, amino alcohols, alcohols and terpenes with π-extended acyclic cucurbiturils.
    Hassan DS; De Los Santos ZA; Brady KG; Murkli S; Isaacs L; Wolf C
    Org Biomol Chem; 2021 May; 19(19):4248-4253. PubMed ID: 33885685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictive chirality sensing via Schiff base formation.
    Pilicer SL; Mancinelli M; Mazzanti A; Wolf C
    Org Biomol Chem; 2019 Jul; 17(27):6699-6705. PubMed ID: 31243416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chirality imprinting and direct asymmetric reaction screening using a stereodynamic Brønsted/Lewis acid receptor.
    Bentley KW; Proano D; Wolf C
    Nat Commun; 2016 Aug; 7():12539. PubMed ID: 27549926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensing of the concentration and enantiomeric excess of chiral compounds with tropos ligand derived metal complexes.
    Zhang P; Wolf C
    Chem Commun (Camb); 2013 Aug; 49(62):7010-2. PubMed ID: 23811961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organometallic Chirality Sensing via "Click"-Like η
    Nelson E; Bertke JA; Thanzeel FY; Wolf C
    Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202404594. PubMed ID: 38634562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic Covalent Optical Chirality Sensing with a Sterically Encumbered Aminoborane.
    De Los Santos ZA; Lynch CC; Wolf C
    Chemistry; 2022 Nov; 28(61):e202202028. PubMed ID: 35796635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enantioselective sensing of amines based on [1 + 1]-, [2 + 2]-, and [1 + 2]-condensation with fluxional arylacetylene-derived dialdehydes.
    Iwaniuk DP; Wolf C
    Org Lett; 2011 May; 13(10):2602-5. PubMed ID: 21504202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A stereodynamic tripodal ligand with three different coordinating arms: synthesis and zinc(II), copper(I) complexation study.
    Liang J; Canary JW
    Chirality; 2011 Jan; 23(1):24-33. PubMed ID: 20222142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical Terpene and Terpenoid Sensing: Chiral Recognition, Determination of Enantiomeric Composition and Total Concentration Analysis with Late Transition Metal Complexes.
    De Los Santos ZA; Wolf C
    J Am Chem Soc; 2020 Mar; 142(9):4121-4125. PubMed ID: 32077692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational and electronic circular dichroism monitoring of copper(II) coordination with a chiral ligand.
    Wu T; Zhang XP; Li CH; Bouř P; Li YZ; You XZ
    Chirality; 2012 Jun; 24(6):451-8. PubMed ID: 22544463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tandem Use of Optical Sensing and Machine Learning for the Determination of Absolute Configuration, Enantiomeric and Diastereomeric Ratios, and Concentration of Chiral Samples.
    De Los Santos ZA; MacAvaney S; Russell K; Wolf C
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2440-2448. PubMed ID: 31714669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting Chirality in Confined Nanospaces.
    Begato F; Licini G; Zonta C
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202311153. PubMed ID: 37665795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.