These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28902492)

  • 21. Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces.
    Celik Cogal G; Das PK; Yurdabak Karaca G; Bhethanabotla VR; Uygun Oksuz A
    ACS Appl Bio Mater; 2021 Nov; 4(11):7932-7941. PubMed ID: 35006774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upstream Rheotaxis of Catalytic Janus Spheres.
    Sharan P; Xiao Z; Mancuso V; Uspal WE; Simmchen J
    ACS Nano; 2022 Mar; 16(3):4599-4608. PubMed ID: 35230094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The gating effect by thousands of bubble-propelled micromotors in macroscale channels.
    Teo WZ; Wang H; Pumera M
    Nanoscale; 2015 Jul; 7(27):11575-9. PubMed ID: 26086456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial rheotaxis.
    Palacci J; Sacanna S; Abramian A; Barral J; Hanson K; Grosberg AY; Pine DJ; Chaikin PM
    Sci Adv; 2015 May; 1(4):e1400214. PubMed ID: 26601175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro/Nanomotors for Water Purification.
    Ying Y; Pumera M
    Chemistry; 2019 Jan; 25(1):106-121. PubMed ID: 30306655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-inspired Acousto-magnetic Microswarm Robots with Upstream Motility.
    Ahmed D; Sukhov A; Hauri D; Rodrigue D; Gian M; Harting J; Nelson B
    Nat Mach Intell; 2021 Feb; 3(2):116-124. PubMed ID: 34258513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-harvesting synthetic nano- and micromotors: a review.
    Eskandarloo H; Kierulf A; Abbaspourrad A
    Nanoscale; 2017 Aug; 9(34):12218-12230. PubMed ID: 28809422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro and nanomotors in diagnostics.
    Chałupniak A; Morales-Narváez E; Merkoçi A
    Adv Drug Deliv Rev; 2015 Dec; 95():104-16. PubMed ID: 26408790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magneto-Acoustic Hybrid Nanomotor.
    Li J; Li T; Xu T; Kiristi M; Liu W; Wu Z; Wang J
    Nano Lett; 2015 Jul; 15(7):4814-21. PubMed ID: 26077325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Additional Navigational Strategies Can Augment Odor-Gated Rheotaxis for Navigation under Conditions of Variable Flow.
    Vasey G; Lukeman R; Wyeth RC
    Integr Comp Biol; 2015 Sep; 55(3):447-60. PubMed ID: 26116202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels.
    Gao W; Pei A; Dong R; Wang J
    J Am Chem Soc; 2014 Feb; 136(6):2276-9. PubMed ID: 24475997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-stream migration of active particles.
    Katuri J; Uspal WE; Simmchen J; Miguel-López A; Sánchez S
    Sci Adv; 2018 Jan; 4(1):eaao1755. PubMed ID: 29387790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perspective: nanomotors without moving parts that propel themselves in solution.
    Kapral R
    J Chem Phys; 2013 Jan; 138(2):020901. PubMed ID: 23320656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Propulsion of Homonuclear Colloidal Chains Based on Orientation Control under Combined Electric and Magnetic Fields.
    Haque MA; Zhu X; Uyanga N; Wu N
    Langmuir; 2023 Feb; 39(7):2751-2760. PubMed ID: 36745581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast Nanocrystals Decorated Micromotors for On-Site Dynamic Chemical Processes.
    Jurado-Sánchez B; Wang J; Escarpa A
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19618-25. PubMed ID: 27387459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-propulsion of catalytic nanomotors synthesised by seeded growth of asymmetric platinum-gold nanoparticles.
    Santiago I; Jiang L; Foord J; Turberfield AJ
    Chem Commun (Camb); 2018 Feb; 54(15):1901-1904. PubMed ID: 29393328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubble-Propelled Micromotors.
    Moo JG; Wang H; Pumera M
    Chemistry; 2016 Jan; 22(1):355-60. PubMed ID: 26526004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.