BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28902510)

  • 1. Stereospecific Formation of E- and Z-Disubstituted Double Bonds by Dehydratase Domains from Modules 1 and 2 of the Fostriecin Polyketide Synthase.
    Shah DD; You YO; Cane DE
    J Am Chem Soc; 2017 Oct; 139(40):14322-14330. PubMed ID: 28902510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Rate profiles establish that polyketide synthase dehydratase domains utilize a single-base mechanism.
    Xie X; Cane DE
    Org Biomol Chem; 2018 Dec; 16(47):9165-9170. PubMed ID: 30457629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of the biosynthetic gene cluster and the post-PKS modification mechanism for fostriecin in Streptomyces pulveraceus.
    Kong R; Liu X; Su C; Ma C; Qiu R; Tang L
    Chem Biol; 2013 Jan; 20(1):45-54. PubMed ID: 23352138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereospecific Formation of Z-Trisubstituted Double Bonds by the Successive Action of Ketoreductase and Dehydratase Domains from trans-AT Polyketide Synthases.
    Xie X; Cane DE
    Biochemistry; 2018 Jun; 57(22):3126-3129. PubMed ID: 29293329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of the co-expression plasmids of fostriecin polyketide synthases and heterologous expression in Streptomyces.
    Su C; Zhao X; Qiu R; Tang L
    Pharm Biol; 2015 Feb; 53(2):269-74. PubMed ID: 25427408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-colinear polyketide biosynthesis in the aureothin and neoaureothin pathways: an evolutionary perspective.
    Traitcheva N; Jenke-Kodama H; He J; Dittmann E; Hertweck C
    Chembiochem; 2007 Oct; 8(15):1841-9. PubMed ID: 17763486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereospecificity of ketoreductase domains 1 and 2 of the tylactone modular polyketide synthase.
    Castonguay R; Valenzano CR; Chen AY; Keatinge-Clay A; Khosla C; Cane DE
    J Am Chem Soc; 2008 Sep; 130(35):11598-9. PubMed ID: 18693734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cis-Delta(2,3)-double bond of phoslactomycins is generated by a post-PKS tailoring enzyme.
    Palaniappan N; Alhamadsheh MM; Reynolds KA
    J Am Chem Soc; 2008 Sep; 130(37):12236-7. PubMed ID: 18714992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratase-containing module 2 of the picromycin/methymycin polyketide synthase.
    Wu J; Zaleski TJ; Valenzano C; Khosla C; Cane DE
    J Am Chem Soc; 2005 Dec; 127(49):17393-404. PubMed ID: 16332089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the post-polyketide synthase modification enzymes for fostriecin biosynthesis in Streptomyces pulveraceus.
    Liu XJ; Kong RX; Niu MS; Qiu RG; Tang L
    J Nat Prod; 2013 Apr; 76(4):524-9. PubMed ID: 23586868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of a Type II Polyketide Synthase that Catalyzes Polyene Formation.
    Du D; Katsuyama Y; Shin-Ya K; Ohnishi Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1954-1957. PubMed ID: 29265713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and stereospecificity of a fully saturating polyketide synthase module: nanchangmycin synthase module 2 and its dehydratase domain.
    Guo X; Liu T; Valenzano CR; Deng Z; Cane DE
    J Am Chem Soc; 2010 Oct; 132(42):14694-6. PubMed ID: 20925339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stereospecificity of the dehydratase domain from the terminal module of the rifamycin polyketide synthase.
    Gay D; You YO; Keatinge-Clay A; Cane DE
    Biochemistry; 2013 Dec; 52(49):8916-28. PubMed ID: 24274103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereospecificity of the dehydratase domain of the erythromycin polyketide synthase.
    Valenzano CR; You YO; Garg A; Keatinge-Clay A; Khosla C; Cane DE
    J Am Chem Soc; 2010 Oct; 132(42):14697-9. PubMed ID: 20925342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase.
    Castonguay R; He W; Chen AY; Khosla C; Cane DE
    J Am Chem Soc; 2007 Nov; 129(44):13758-69. PubMed ID: 17918944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of polyene macrolide biosynthesis: interplay between polyketide synthase domains and modules as revealed via domain swapping, mutagenesis, and heterologous complementation.
    Heia S; Borgos SE; Sletta H; Escudero L; Seco EM; Malpartida F; Ellingsen TE; Zotchev SB
    Appl Environ Microbiol; 2011 Oct; 77(19):6982-90. PubMed ID: 21821762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereochemistry of reductions catalyzed by methyl-epimerizing ketoreductase domains of polyketide synthases.
    You YO; Khosla C; Cane DE
    J Am Chem Soc; 2013 May; 135(20):7406-9. PubMed ID: 23659177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Single-Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide.
    Peng H; Ishida K; Hertweck C
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18252-18256. PubMed ID: 31595618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating Ketoreductase Exchanges as a Means of Rationally Altering Polyketide Stereochemistry.
    Annaval T; Paris C; Leadlay PF; Jacob C; Weissman KJ
    Chembiochem; 2015 Jun; 16(9):1357-64. PubMed ID: 25851784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line.
    Sugimoto Y; Ding L; Ishida K; Hertweck C
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1560-4. PubMed ID: 24402879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.