These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28902902)

  • 1. Multiscale biphasic modelling of peritumoural collagen microstructure: The effect of tumour growth on permeability and fluid flow.
    Wijeratne PA; Hipwell JH; Hawkes DJ; Stylianopoulos T; Vavourakis V
    PLoS One; 2017; 12(9):e0184511. PubMed ID: 28902902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modelling of solid tumour growth: the effect of collagen micromechanics.
    Wijeratne PA; Vavourakis V; Hipwell JH; Voutouri C; Papageorgis P; Stylianopoulos T; Evans A; Hawkes DJ
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1079-90. PubMed ID: 26564173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Scale Degradation of Peritumoural Extracellular Matrix Fibre Network and Its Role Within Tissue-Scale Cancer Invasion.
    Shuttleworth R; Trucu D
    Bull Math Biol; 2020 May; 82(6):65. PubMed ID: 32458057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth.
    Vavourakis V; Wijeratne PA; Shipley R; Loizidou M; Stylianopoulos T; Hawkes DJ
    PLoS Comput Biol; 2017 Jan; 13(1):e1005259. PubMed ID: 28125582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis.
    Vilanova G; Burés M; Colominas I; Gomez H
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30185542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
    Cai Y; Xu S; Wu J; Long Q
    J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the transport of fluid through heterogeneous, whole tumours in silico.
    Sweeney PW; d'Esposito A; Walker-Samuel S; Shipley RJ
    PLoS Comput Biol; 2019 Jun; 15(6):e1006751. PubMed ID: 31226169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interstitial stress and fluid pressure within a growing tumor.
    Sarntinoranont M; Rooney F; Ferrari M
    Ann Biomed Eng; 2003 Mar; 31(3):327-35. PubMed ID: 12680730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macro-scale models for fluid flow in tumour tissues: impact of microstructure properties.
    Vaghi C; Fanciullino R; Benzekry S; Poignard C
    J Math Biol; 2022 Feb; 84(4):27. PubMed ID: 35224711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse.
    Stylianopoulos T; Martin JD; Snuderl M; Mpekris F; Jain SR; Jain RK
    Cancer Res; 2013 Jul; 73(13):3833-41. PubMed ID: 23633490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive Remodeling Alters Fluid Transport Properties of Collagen Networks - Implications for Tumor Growth.
    Ferruzzi J; Sun M; Gkousioudi A; Pilvar A; Roblyer D; Zhang Y; Zaman MH
    Sci Rep; 2019 Nov; 9(1):17151. PubMed ID: 31748563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations.
    Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA
    Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal therapy induced fluid pressure and stress reductions in a solid tumor.
    Jin ZH
    Microvasc Res; 2022 Jan; 139():104250. PubMed ID: 34516982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-scale agent-based model for avascular tumour growth.
    Sadhukhan S; Mishra PK; Basu SK; Mandal JK
    Biosystems; 2021 Aug; 206():104450. PubMed ID: 34098060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting stress and interstitial fluid pressure in tumors based on biphasic theory.
    Dwairy M; Reddy JN; Righetti R
    Comput Biol Med; 2023 Dec; 167():107651. PubMed ID: 37931527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multiscale Mathematical Model of Tumour Invasive Growth.
    Peng L; Trucu D; Lin P; Thompson A; Chaplain MA
    Bull Math Biol; 2017 Mar; 79(3):389-429. PubMed ID: 28210916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaky vessels as a potential source of stromal acidification in tumours.
    Martin NK; Gaffney EA; Gatenby RA; Maini PK
    J Theor Biol; 2010 Dec; 267(3):454-60. PubMed ID: 20699102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.