These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 28902955)
1. Regulation of citrus responses to the combined action of drought and high temperatures depends on the severity of water deprivation. Zandalinas SI; Balfagón D; Arbona V; Gómez-Cadenas A Physiol Plant; 2018 Apr; 162(4):427-438. PubMed ID: 28902955 [TBL] [Abstract][Full Text] [Related]
2. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. Zandalinas SI; Rivero RM; Martínez V; Gómez-Cadenas A; Arbona V BMC Plant Biol; 2016 Apr; 16():105. PubMed ID: 27121193 [TBL] [Abstract][Full Text] [Related]
3. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Balfagón D; Zandalinas SI; Baliño P; Muriach M; Gómez-Cadenas A Plant Physiol Biochem; 2018 Jun; 127():194-199. PubMed ID: 29609175 [TBL] [Abstract][Full Text] [Related]
4. Plant adaptations to the combination of drought and high temperatures. Zandalinas SI; Mittler R; Balfagón D; Arbona V; Gómez-Cadenas A Physiol Plant; 2018 Jan; 162(1):2-12. PubMed ID: 28042678 [TBL] [Abstract][Full Text] [Related]
5. Reduction of heat stress pressure and activation of photosystem II repairing system are crucial for citrus tolerance to multiple abiotic stress combination. Balfagón D; Zandalinas SI; Dos Reis de Oliveira T; Santa-Catarina C; Gómez-Cadenas A Physiol Plant; 2022 Nov; 174(6):e13809. PubMed ID: 36309819 [TBL] [Abstract][Full Text] [Related]
6. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. Dutra de Souza J; de Andrade Silva EM; Coelho Filho MA; Morillon R; Bonatto D; Micheli F; da Silva Gesteira A PLoS One; 2017; 12(5):e0177993. PubMed ID: 28545114 [TBL] [Abstract][Full Text] [Related]
7. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Balfagón D; Terán F; de Oliveira TDR; Santa-Catarina C; Gómez-Cadenas A Plant Cell Rep; 2022 Mar; 41(3):593-602. PubMed ID: 34232376 [TBL] [Abstract][Full Text] [Related]
8. Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures. Zandalinas SI; Sales C; Beltrán J; Gómez-Cadenas A; Arbona V Front Plant Sci; 2016; 7():1954. PubMed ID: 28119698 [TBL] [Abstract][Full Text] [Related]
9. Differential accumulation of flavonoids and phytohormones resulting from the canopy/rootstock interaction of citrus plants subjected to dehydration/rehydration. Santos ICD; Almeida AF; Pirovani CP; Costa MGC; Silva MFDGFD; Bellete BS; Freschi L; Soares Filho W; Coelho Filho MA; Gesteira ADS Plant Physiol Biochem; 2017 Oct; 119():147-158. PubMed ID: 28866236 [TBL] [Abstract][Full Text] [Related]
10. Omics analyses in citrus reveal a possible role of RNA translation pathways and Unfolded Protein Response regulators in the tolerance to combined drought, high irradiance, and heat stress. Balfagón D; Zandalinas SI; Dos Reis de Oliveira T; Santa-Catarina C; Gómez-Cadenas A Hortic Res; 2023 Jul; 10(7):uhad107. PubMed ID: 37577403 [TBL] [Abstract][Full Text] [Related]
11. Recurrent water deficit causes alterations in the profile of redox proteins in citrus plants. Neves DM; Santana-Vieira DDS; Dória MS; Freschi L; Ferreira CF; Soares Filho WDS; Costa MGC; Coelho Filho MA; Micheli F; Gesteira ADS Plant Physiol Biochem; 2018 Nov; 132():497-507. PubMed ID: 30292982 [TBL] [Abstract][Full Text] [Related]
12. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Ziogas V; Tanou G; Filippou P; Diamantidis G; Vasilakakis M; Fotopoulos V; Molassiotis A Plant Physiol Biochem; 2013 Jul; 68():118-26. PubMed ID: 23685754 [TBL] [Abstract][Full Text] [Related]
13. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Zandalinas SI; Balfagón D; Arbona V; Gómez-Cadenas A Front Plant Sci; 2017; 8():953. PubMed ID: 28638395 [TBL] [Abstract][Full Text] [Related]
14. Metabolic response of maize plants to multi-factorial abiotic stresses. Sun CX; Li MQ; Gao XX; Liu LN; Wu XF; Zhou JH Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():120-9. PubMed ID: 25622534 [TBL] [Abstract][Full Text] [Related]
15. Drought tolerance memory transmission by citrus buds. de Oliveira Sousa AR; Ribas RF; Filho MAC; Freschi L; Ferreira CF; Filho WDSS; Pérez-Molina JP; da Silva Gesteira A Plant Sci; 2022 Jul; 320():111292. PubMed ID: 35643622 [TBL] [Abstract][Full Text] [Related]
16. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Carvalho LC; Coito JL; Gonçalves EF; Chaves MM; Amâncio S Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():101-11. PubMed ID: 26518605 [TBL] [Abstract][Full Text] [Related]
18. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. Georgii E; Jin M; Zhao J; Kanawati B; Schmitt-Kopplin P; Albert A; Winkler JB; Schäffner AR BMC Plant Biol; 2017 Jul; 17(1):120. PubMed ID: 28693422 [TBL] [Abstract][Full Text] [Related]
19. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Killi D; Bussotti F; Raschi A; Haworth M Physiol Plant; 2017 Feb; 159(2):130-147. PubMed ID: 27535211 [TBL] [Abstract][Full Text] [Related]
20. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. de Ollas C; Hernando B; Arbona V; Gómez-Cadenas A Physiol Plant; 2013 Mar; 147(3):296-306. PubMed ID: 22671923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]