BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28902961)

  • 1. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Honeycomb self-assembled peptide scaffolds by the breath figure method.
    Du M; Zhu P; Yan X; Su Y; Song W; Li J
    Chemistry; 2011 Apr; 17(15):4238-45. PubMed ID: 21387428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary Force-Driven, Hierarchical Co-Assembly of Dandelion-Like Peptide Microstructures.
    Wang Y; Huang R; Qi W; Xie Y; Wang M; Su R; He Z
    Small; 2015 Jun; 11(24):2893-902. PubMed ID: 25759325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability.
    Wang M; Xiong S; Wu X; Chu PK
    Small; 2011 Oct; 7(19):2801-7. PubMed ID: 22049551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures.
    Biswas K; Rao CN
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):811-5. PubMed ID: 20356006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired peptide nanostructures for organic field-effect transistors.
    Cipriano T; Knotts G; Laudari A; Bianchi RC; Alves WA; Guha S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21408-15. PubMed ID: 25376495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid peptide-PNA monomers as building blocks for the fabrication of supramolecular aggregates.
    Cimmino L; Diaferia C; Rosa M; Morelli G; Rosa E; Accardo A
    J Pept Sci; 2024 Jul; 30(7):e3573. PubMed ID: 38471735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes.
    Semin S; van Etteger A; Cattaneo L; Amdursky N; Kulyuk L; Lavrov S; Sigov A; Mishina E; Rosenman G; Rasing T
    Small; 2015 Mar; 11(9-10):1156-60. PubMed ID: 25074710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.