BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28902971)

  • 1. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl
    Yang X; Ji L; Zou X; Lim T; Zhao J; Yu ET; Bard AJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15078-15082. PubMed ID: 28902971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications.
    Zou X; Ji L; Ge J; Sadoway DR; Yu ET; Bard AJ
    Nat Commun; 2019 Dec; 10(1):5772. PubMed ID: 31852891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Concept of Molten Salt Systems for the Electrodeposition of Si, Ti, and W.
    Norikawa Y; Nohira T
    Acc Chem Res; 2023 Jul; 56(13):1698-1709. PubMed ID: 37307411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.
    Zou X; Ji L; Yang X; Lim T; Yu ET; Bard AJ
    J Am Chem Soc; 2017 Nov; 139(45):16060-16063. PubMed ID: 29095608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Production of Si without Generation of CO
    Ge J; Zou X; Almassi S; Ji L; Chaplin BP; Bard AJ
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16223-16228. PubMed ID: 31483553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.
    Hsieh PY; Lee CY; Tai NH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemistry of Ultrathin, Semitransparent, and Catalytic Gold Films Electrodeposited Epitaxially onto n-Silicon (111).
    Chen Q; Switzer JA
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21365-21371. PubMed ID: 29856594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films.
    Switzer JA; Hill JC; Mahenderkar NK; Liu YC
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15828-37. PubMed ID: 27232100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon electrowinning by molten salts electrolysis.
    Padamata SK; Saevarsdottir G
    Front Chem; 2023; 11():1133990. PubMed ID: 36817169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Structural and Optical Properties of Electrodeposited Silicon Films on Graphite Substrates.
    Islam MM; Said H; Hamzaoui AH; Mnif A; Sakurai T; Fukata N; Akimoto K
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO
    Weng W; Zeng C; Xiao W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9156-9163. PubMed ID: 30789694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Characterization of Crystalline Silicon by Electrochemical Liquid-Liquid-Solid Crystal Growth in Ionic Liquid.
    Zhao Z; Yang C; Wu L; Zhang C; Wang R; Ma E
    ACS Omega; 2021 May; 6(18):11935-11942. PubMed ID: 34056348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO
    Dong Y; Slade T; Stolt MJ; Li L; Girard SN; Mai L; Jin S
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14453-14457. PubMed ID: 28952181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered silicon microwire arrays grown from substrates patterned using imprint lithography and electrodeposition.
    Audesirk HA; Warren EL; Ku J; Lewis NS
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1396-400. PubMed ID: 25562340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission.
    Tian F; Pang Z; Hu S; Zhang X; Wang F; Nie W; Xia X; Li G; Hsu HY; Xu Q; Zou X; Ji L; Lu X
    Research (Wash D C); 2023; 6():0142. PubMed ID: 37214200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt.
    Zhao J; Li J; Ying P; Zhang W; Meng L; Li C
    Chem Commun (Camb); 2013 May; 49(40):4477-9. PubMed ID: 23571606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells.
    Wan Y; Samundsett C; Bullock J; Allen T; Hettick M; Yan D; Zheng P; Zhang X; Cui J; McKeon J; Javey A; Cuevas A
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14671-7. PubMed ID: 27219911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.
    Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y
    Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.
    Yang L; Yu X; Hu W; Wu X; Zhao Y; Yang D
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4135-41. PubMed ID: 25642749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.