These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 28903)

  • 1. Effects of maleate on CoA metabolism in rat kidney.
    Rogulski J; Pacanis A
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():406-15. PubMed ID: 28903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of maleate on the content of CoA and its derivatives in rat kidney mitochondria.
    Pacanis A; Strzelecki T; Rogulski J
    J Biol Chem; 1981 Dec; 256(24):13035-8. PubMed ID: 7309749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of CoA-transferase in the reaction of maleate with amino acids and proteins.
    Mohuczy-Dominiak D; Pacanis A; Rogulski J; Angielski S
    Acta Biochim Pol; 1983; 30(1):39-49. PubMed ID: 6575532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of succinyl-CoA transferase from rat kidney mitochondria.
    Pacanis A; Rogulski J
    Acta Biochim Pol; 1977; 24(1):3-11. PubMed ID: 868435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of maleate action on rat kidney mitochondria. Effect on substrate-level phosphorylation.
    Pacanis A; Rogulski J; Ledóchowski H; Angielski S
    Acta Biochim Pol; 1975; 22(1):1-10. PubMed ID: 1130157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on chemical and enzymatic synthesis of maleyl-CoA.
    Pacanis A; Rogulski J
    J Biol Chem; 1981 Dec; 256(24):13030-4. PubMed ID: 6946991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
    Engst S; Vock P; Wang M; Kim JJ; Ghisla S
    Biochemistry; 1999 Jan; 38(1):257-67. PubMed ID: 9890906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ketogenesis. Mitochondrial acetyl-CoA acetyltransferase from rat liver: initial-rate kinetics in the presence of the product CoASH reveal intermediary plateau regions.
    Huth W; Menke R
    Eur J Biochem; 1982 Nov; 128(2-3):413-9. PubMed ID: 6129974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of a dicarboxyl-CoA: dicarboxylic acid coenzyme A transferase from rat liver mitochondria.
    Deana R
    Biochem Int; 1992 Mar; 26(4):767-73. PubMed ID: 1610380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acylation of lysophosphatidylcholine by brain membranes.
    Premkumar N; Sun GY; MacQuarrie RA
    J Neurosci Res; 1993 Jun; 35(3):321-6. PubMed ID: 8350392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.
    Modis Y; Wierenga RK
    J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The carnitine acyltransferases and their role in modulating acyl-CoA pools.
    Ramsay RR; Arduini A
    Arch Biochem Biophys; 1993 May; 302(2):307-14. PubMed ID: 8489235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups.
    Vock P; Engst S; Eder M; Ghisla S
    Biochemistry; 1998 Feb; 37(7):1848-60. PubMed ID: 9485310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carnitine acyltransferases and their influence on CoA pools in health and disease.
    Ramsay RR; Zammit VA
    Mol Aspects Med; 2004; 25(5-6):475-93. PubMed ID: 15363637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an in vivo modification of mitochondrial proteins by coenzyme A.
    Huth W; Worm-Breitgoff C; Möller U; Wunderlich I
    Biochim Biophys Acta; 1991 Mar; 1077(1):1-10. PubMed ID: 1672610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turnover and transformation of mitochondrial acetyl-CoA acetyltransferase into CoA-modified forms.
    Schwerdt G; Huth W
    Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):915-9. PubMed ID: 8100417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of rat-liver mitochondrial acetyl-CoA acetyltransferase activity by a reversible chemical modification with coenzyme A.
    Quandt L; Huth W
    Biochim Biophys Acta; 1984 Jan; 784(2-3):168-76. PubMed ID: 6140956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of mitochondrial acyl-CoA: glycine N-acyltransferases from kidney.
    Kelley M; Vessey DA
    J Biochem Toxicol; 1993 Jun; 8(2):63-9. PubMed ID: 8355261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the CoA-modified forms of mitochondrial acetyl-CoA acetyltransferase and of glutamate dehydrogenase as nearest-neighbour proteins.
    Schwerdt G; Möller U; Huth W
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):353-7. PubMed ID: 1684101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for net uptake and efflux of mitochondrial coenzyme A.
    Tahiliani AG
    Biochim Biophys Acta; 1991 Aug; 1067(1):29-37. PubMed ID: 1868101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.