These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 28903183)
1. Inhibition of hemangioma growth using polymer-lipid hybrid nanoparticles for delivery of rapamycin. Li H; Teng Y; Sun J; Liu J Biomed Pharmacother; 2017 Nov; 95():875-884. PubMed ID: 28903183 [TBL] [Abstract][Full Text] [Related]
2. Enhanced rapamycin delivery to hemangiomas by lipid polymer nanoparticles coupled with anti-VEGFR antibody. Li H; Teng Y; Xu X; Liu J Int J Mol Med; 2018 Jun; 41(6):3586-3596. PubMed ID: 29512710 [TBL] [Abstract][Full Text] [Related]
3. Promotion of Propranolol Delivery to Hemangiomas by Using Anti-VEGFR Antibody-Conjugated Poly(lactic-co-glycolic acid) Nanoparticles. Zhu X; Guo X; Liu D; Gong Y; Sun J; Dong C J Biomed Nanotechnol; 2017 Dec; 13(12):1694-1705. PubMed ID: 29490757 [TBL] [Abstract][Full Text] [Related]
4. Significant inhibition of infantile hemangioma growth by sustained delivery of urea from liposomes-in-microspheres. Zhu X; Guo X; Liu D; Gong Y; Sun J; Dong C Oncol Rep; 2018 Jan; 39(1):109-118. PubMed ID: 29192323 [TBL] [Abstract][Full Text] [Related]
5. The sustained and targeted treatment of hemangiomas by propranolol-loaded CD133 aptamers conjugated liposomes-in-microspheres. Guo X; Dong C; Liu Q; Zhu X; Zuo S; Zhang H Biomed Pharmacother; 2019 Jun; 114():108823. PubMed ID: 30965238 [TBL] [Abstract][Full Text] [Related]
6. Continuous delivery of propranolol from liposomes-in-microspheres significantly inhibits infantile hemangioma growth. Guo X; Zhu X; Liu D; Gong Y; Sun J; Dong C Int J Nanomedicine; 2017; 12():6923-6936. PubMed ID: 29075111 [TBL] [Abstract][Full Text] [Related]
7. Rapamycin inhibits the proliferation of endothelial cells in hemangioma by blocking the mTOR-FABP4 pathway. Wang Y; Chen J; Tang W; Zhang Y; Li X Biomed Pharmacother; 2017 Jan; 85():272-279. PubMed ID: 27914823 [TBL] [Abstract][Full Text] [Related]
8. Development of rapamycin-encapsulated exosome-mimetic nanoparticles-in-PLGA microspheres for treatment of hemangiomas. Li H; Wang X; Guo X; Wan Q; Teng Y; Liu J Biomed Pharmacother; 2022 Apr; 148():112737. PubMed ID: 35276517 [TBL] [Abstract][Full Text] [Related]
9. PLGA nanoparticles with CD133 aptamers for targeted delivery and sustained release of propranolol to hemangioma. Guo X; Zhu X; Gao J; Liu D; Dong C; Jin X Nanomedicine (Lond); 2017 Nov; 12(21):2611-2624. PubMed ID: 28960167 [TBL] [Abstract][Full Text] [Related]
10. Propranolol-Loaded Mesoporous Silica Nanoparticles for Treatment of Infantile Hemangiomas. Wu H; Wang X; Zheng J; Zhang L; Li X; Yuan WE; Liu X Adv Healthc Mater; 2019 May; 8(9):e1801261. PubMed ID: 30838782 [TBL] [Abstract][Full Text] [Related]
11. Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model. Lang SA; Gaumann A; Koehl GE; Seidel U; Bataille F; Klein D; Ellis LM; Bolder U; Hofstaedter F; Schlitt HJ; Geissler EK; Stoeltzing O Int J Cancer; 2007 Apr; 120(8):1803-10. PubMed ID: 17230506 [TBL] [Abstract][Full Text] [Related]
12. β-elemene affects angiogenesis of infantile hemangioma by regulating angiotensin-converting enzyme 2 and hypoxia-inducible factor-1 alpha. Wang Z; Wang Z; Du C; Zhang Y; Tao B; Xian H J Nat Med; 2021 Jun; 75(3):655-663. PubMed ID: 33861415 [TBL] [Abstract][Full Text] [Related]
13. Enhanced efficacy of propranolol therapy for infantile hemangiomas based on a mesoporous silica nanoplatform through mediating autophagy dysfunction. Wu H; Wang X; Liang H; Zheng J; Huang S; Zhang D Acta Biomater; 2020 Apr; 107():272-285. PubMed ID: 32145394 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Endothelial Microparticles Induced by Different Therapeutic Drugs for Infantile Hemangioma. Zhu JY; Zhang W; Ren JG; Chen G; Zhao YF J Cardiovasc Pharmacol; 2015 Sep; 66(3):261-9. PubMed ID: 26348824 [TBL] [Abstract][Full Text] [Related]
15. The flavonoid luteolin suppresses infantile hemangioma by targeting FZD6 in the Wnt pathway. Dai Y; Zheng H; Liu Z; Wang Y; Hu W Invest New Drugs; 2021 Jun; 39(3):775-784. PubMed ID: 33411210 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic target of rapamycin small interfering RNA and rapamycin synergistically inhibit tumour growth in a mouse xenograft model of human oesophageal carcinoma. Sun MM; Zhang MZ; Chen Y; Li SL; Zhang W; Ya GW; Chen KS J Int Med Res; 2012; 40(5):1636-43. PubMed ID: 23206445 [TBL] [Abstract][Full Text] [Related]
17. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. Shi P; Aluri S; Lin YA; Shah M; Edman M; Dhandhukia J; Cui H; MacKay JA J Control Release; 2013 Nov; 171(3):330-8. PubMed ID: 23714121 [TBL] [Abstract][Full Text] [Related]
18. Rapamycin Inhibits Oxidized Low Density Lipoprotein Uptake in Human Umbilical Vein Endothelial Cells via mTOR/NF-κB/LOX-1 Pathway. Zhou YD; Cao XQ; Liu ZH; Cao YJ; Liu CF; Zhang YL; Xie Y PLoS One; 2016; 11(1):e0146777. PubMed ID: 26752047 [TBL] [Abstract][Full Text] [Related]
19. Enhanced cellular uptake and in vivo pharmacokinetics of rapamycin-loaded cubic phase nanoparticles for cancer therapy. Parhi P; Mohanty C; Sahoo SK Acta Biomater; 2011 Oct; 7(10):3656-69. PubMed ID: 21704741 [TBL] [Abstract][Full Text] [Related]