These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28903286)

  • 21. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microcantilever heater-thermometer with a thermal isolation layer for making thermal nanotopography measurements.
    Dai Z; Corbin EA; King WP
    Nanotechnology; 2010 Feb; 21(5):055503. PubMed ID: 20023322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved Optical Waveguide Microcantilever for Integrated Nanomechanical Sensor.
    Jing Y; Fan G; Wang R; Zhang Z; Cai X; Wei J; Chen X; Li H; Li Y
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of nano- and mesoscale particles on the performance of microcantilever-based sensors.
    Bottomley LA; Poggi MA; Shen S
    Anal Chem; 2004 Oct; 76(19):5685-9. PubMed ID: 15456286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibration response of piezoelectric microcantilever as ultrasmall mass sensor in liquid environment.
    Karimpour M; Ghaderi R; Raeiszadeh F
    Micron; 2017 Oct; 101():213-220. PubMed ID: 28825995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An investigation of heat transfer between a microcantilever and a substrate for improved thermal topography imaging.
    Somnath S; King WP
    Nanotechnology; 2014 Sep; 25(36):365501. PubMed ID: 25122588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorous Liquids for Magnetic Resonance-Based Thermometry with Enhanced Responsiveness and Environmental Degradation.
    Li J; Mundhenke TF; Smith TG; Arnold WA; Pomerantz WCK
    Anal Chem; 2023 Apr; 95(14):6071-6079. PubMed ID: 37000984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements.
    Burg BR; Tong JK; Hsu WC; Chen G
    Rev Sci Instrum; 2012 Oct; 83(10):104902. PubMed ID: 23126793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple method for determining the coagulation threshold temperature of transparent tissue-mimicking thermal therapy gel phantoms: Validated by magnetic resonance imaging thermometry.
    Brodin NP; Partanen A; Asp P; Branch CA; Guha C; Tomé WA
    Med Phys; 2016 Mar; 43(3):1167-74. PubMed ID: 26936702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microcantilever biosensors.
    Hansen KM; Thundat T
    Methods; 2005 Sep; 37(1):57-64. PubMed ID: 16199177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microcantilever actuation via periodic internal heating.
    Lee J; King WP
    Rev Sci Instrum; 2007 Dec; 78(12):126102. PubMed ID: 18163751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correction of proton resonance frequency shift MR-thermometry errors caused by heat-induced magnetic susceptibility changes during high intensity focused ultrasound ablations in tissues containing fat.
    Baron P; Deckers R; de Greef M; Merckel LG; Bakker CJ; Bouwman JG; Bleys RL; van den Bosch MA; Bartels LW
    Magn Reson Med; 2014 Dec; 72(6):1580-9. PubMed ID: 24347129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High spatial resolution Raman thermometry analysis of TiO2 microparticles.
    Lundt N; Kelly ST; Rödel T; Remez B; Schwartzberg AM; Ceballos A; Baldasseroni C; Anastasi PA; Cox M; Hellman F; Leone SR; Gilles MK
    Rev Sci Instrum; 2013 Oct; 84(10):104906. PubMed ID: 24182150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2-ω and 3-ω temperature measurement of a heated microcantilever.
    Lee B; King WP
    Rev Sci Instrum; 2012 Jul; 83(7):074902. PubMed ID: 22852713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport.
    Zheng J; Wingert MC; Dechaumphai E; Chen R
    Rev Sci Instrum; 2013 Nov; 84(11):114901. PubMed ID: 24289425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale thermal probing.
    Yue Y; Wang X
    Nano Rev; 2012; 3():. PubMed ID: 22419968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noninvasive and real-time plasmon waveguide resonance thermometry.
    Zhang P; Liu L; He Y; Zhou Y; Ji Y; Ma H
    Sensors (Basel); 2015 Apr; 15(4):8481-98. PubMed ID: 25871718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoscale thermometry by scanning thermal microscopy.
    Menges F; Riel H; Stemmer A; Gotsmann B
    Rev Sci Instrum; 2016 Jul; 87(7):074902. PubMed ID: 27475585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A femtogram resolution mass sensor platform, based on SOI electrostatically driven resonant cantilever. Part I: electromechanical model and parameter extraction.
    Teva J; Abadal G; Torres F; Verd J; Pérez-Murano F; Barniol N
    Ultramicroscopy; 2006; 106(8-9):800-7. PubMed ID: 16675119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A V-Shaped Microcantilever Sensor Based on a Gap Method for Real-Time Detection of
    Fathy J; Lai Y
    Biosensors (Basel); 2022 Mar; 12(4):. PubMed ID: 35448254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.