These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28903898)

  • 1. Current status of pathway analysis in genome-wide association study.
    Wang YY; Wang ZX; Hu YD; Wang L; Li N; Zhang B; Han W; Jiang JM
    Yi Chuan; 2017 Aug; 39(8):707-716. PubMed ID: 28903898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BayesKAT: bayesian optimal kernel-based test for genetic association studies reveals joint genetic effects in complex diseases.
    Das Adhikari S; Cui Y; Wang J
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A network-based kernel machine test for the identification of risk pathways in genome-wide association studies.
    Freytag S; Manitz J; Schlather M; Kneib T; Amos CI; Risch A; Chang-Claude J; Heinrich J; Bickeböller H
    Hum Hered; 2013; 76(2):64-75. PubMed ID: 24434848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of gene-based logistic kernel-machine regression model on studies related to the genome-wide association].
    Wo HM; Yi HG; Pan HX; Tang SW; Zhao Y; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Jun; 34(6):633-6. PubMed ID: 24125621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Current status of SNPs interaction in genome-wide association study].
    Li FG; Wang ZP; Hu G; Li H
    Yi Chuan; 2011 Sep; 33(9):901-10. PubMed ID: 21951789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network.assisted analysis to prioritize GWAS results: principles, methods and perspectives.
    Jia P; Zhao Z
    Hum Genet; 2014 Feb; 133(2):125-38. PubMed ID: 24122152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide pathogenesis interpretation using a heat diffusion-based systems genetics method and implications for gene function annotation.
    Quan Y; Zhang QY; Lv BM; Xu RF; Zhang HY
    Mol Genet Genomic Med; 2020 Oct; 8(10):e1456. PubMed ID: 32869547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions.
    Kao PY; Leung KH; Chan LW; Yip SP; Yap MK
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):335-353. PubMed ID: 27888147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association studies: hypothesis-"free" or "engaged"?
    Kitsios GD; Zintzaras E
    Transl Res; 2009 Oct; 154(4):161-4. PubMed ID: 19766959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle.
    Fan H; Wu Y; Zhou X; Xia J; Zhang W; Song Y; Liu F; Chen Y; Zhang L; Gao X; Gao H; Li J
    Sci Rep; 2015 Dec; 5():18389. PubMed ID: 26672757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritizing GWAS results: A review of statistical methods and recommendations for their application.
    Cantor RM; Lange K; Sinsheimer JS
    Am J Hum Genet; 2010 Jan; 86(1):6-22. PubMed ID: 20074509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of pathway analysis approaches using lung cancer GWAS data sets.
    Fehringer G; Liu G; Briollais L; Brennan P; Amos CI; Spitz MR; Bickeböller H; Wichmann HE; Risch A; Hung RJ
    PLoS One; 2012; 7(2):e31816. PubMed ID: 22363742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for pathway analysis from GWAS data.
    Yaspan BL; Veatch OJ
    Curr Protoc Hum Genet; 2011 Oct; Chapter 1():Unit1.20. PubMed ID: 21975938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
    Friedrichs S; Manitz J; Burger P; Amos CI; Risch A; Chang-Claude J; Wichmann HE; Kneib T; Bickeböller H; Hofner B
    Comput Math Methods Med; 2017; 2017():6742763. PubMed ID: 28785300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritization of disease genes from GWAS using ensemble-based positive-unlabeled learning.
    Kolosov N; Daly MJ; Artomov M
    Eur J Hum Genet; 2021 Oct; 29(10):1527-1535. PubMed ID: 34276057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions.
    Gauderman WJ; Mukherjee B; Aschard H; Hsu L; Lewinger JP; Patel CJ; Witte JS; Amos C; Tai CG; Conti D; Torgerson DG; Lee S; Chatterjee N
    Am J Epidemiol; 2017 Oct; 186(7):762-770. PubMed ID: 28978192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association studies: inherent limitations and future challenges.
    Du Y; Xie J; Chang W; Han Y; Cao G
    Front Med; 2012 Dec; 6(4):444-50. PubMed ID: 23124883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel.
    Yang J; Jiang H; Yeh CT; Yu J; Jeddeloh JA; Nettleton D; Schnable PS
    Plant J; 2015 Nov; 84(3):587-96. PubMed ID: 26386250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.