BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28903997)

  • 1. Mitotic post-translational modifications of histones promote chromatin compaction
    Zhiteneva A; Bonfiglio JJ; Makarov A; Colby T; Vagnarelli P; Schirmer EC; Matic I; Earnshaw WC
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28903997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation.
    Kruitwagen T; Denoth-Lippuner A; Wilkins BJ; Neumann H; Barral Y
    Elife; 2015 Nov; 4():e1039. PubMed ID: 26615018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics.
    Biggs R; Liu PZ; Stephens AD; Marko JF
    Mol Biol Cell; 2019 Mar; 30(7):820-827. PubMed ID: 30625026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic chromosome structure and condensation.
    Belmont AS
    Curr Opin Cell Biol; 2006 Dec; 18(6):632-8. PubMed ID: 17046228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-step model for condensin activation during mitotic chromosome condensation.
    Bazile F; St-Pierre J; D'Amours D
    Cell Cycle; 2010 Aug; 9(16):3243-55. PubMed ID: 20703077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2.
    Buster DW; Daniel SG; Nguyen HQ; Windler SL; Skwarek LC; Peterson M; Roberts M; Meserve JH; Hartl T; Klebba JE; Bilder D; Bosco G; Rogers GC
    J Cell Biol; 2013 Apr; 201(1):49-63. PubMed ID: 23530065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis.
    Samejima K; Booth DG; Ogawa H; Paulson JR; Xie L; Watson CA; Platani M; Kanemaki MT; Earnshaw WC
    J Cell Sci; 2018 Feb; 131(4):. PubMed ID: 29361541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome condensation: weaving an untangled web.
    Thadani R; Uhlmann F
    Curr Biol; 2015 Aug; 25(15):R663-6. PubMed ID: 26241143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast.
    Kakui Y; Rabinowitz A; Barry DJ; Uhlmann F
    Nat Genet; 2017 Oct; 49(10):1553-1557. PubMed ID: 28825727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitotic chromosome formation and the condensin paradox.
    Gassmann R; Vagnarelli P; Hudson D; Earnshaw WC
    Exp Cell Res; 2004 May; 296(1):35-42. PubMed ID: 15120991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells.
    Zhai L; Wang H; Tang W; Liu W; Hao S; Zeng X
    Cell Biol Int; 2011 Jul; 35(7):735-40. PubMed ID: 21395557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells.
    Fazzio TG; Panning B
    J Cell Biol; 2010 Feb; 188(4):491-503. PubMed ID: 20176923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMC complexes differentially compact mitotic chromosomes according to genomic context.
    Schalbetter SA; Goloborodko A; Fudenberg G; Belton JM; Miles C; Yu M; Dekker J; Mirny L; Baxter J
    Nat Cell Biol; 2017 Sep; 19(9):1071-1080. PubMed ID: 28825700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cascade of histone modifications induces chromatin condensation in mitosis.
    Wilkins BJ; Rall NA; Ostwal Y; Kruitwagen T; Hiragami-Hamada K; Winkler M; Barral Y; Fischle W; Neumann H
    Science; 2014 Jan; 343(6166):77-80. PubMed ID: 24385627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis.
    Wike CL; Graves HK; Hawkins R; Gibson MD; Ferdinand MB; Zhang T; Chen Z; Hudson DF; Ottesen JJ; Poirier MG; Schumacher J; Tyler JK
    Elife; 2016 Feb; 5():e11402. PubMed ID: 26878753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome folding principles uncovered in condensin-depleted mitotic chromosomes.
    Zhao H; Lin Y; Lin E; Liu F; Shu L; Jing D; Wang B; Wang M; Shan F; Zhang L; Lam JC; Midla SC; Giardine BM; Keller CA; Hardison RC; Blobel GA; Zhang H
    Nat Genet; 2024 Jun; 56(6):1213-1224. PubMed ID: 38802567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of histone phosphorylation in chromatin dynamics and its implications in diseases.
    Oki M; Aihara H; Ito T
    Subcell Biochem; 2007; 41():319-36. PubMed ID: 17484134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα.
    Samejima K; Samejima I; Vagnarelli P; Ogawa H; Vargiu G; Kelly DA; de Lima Alves F; Kerr A; Green LC; Hudson DF; Ohta S; Cooke CA; Farr CJ; Rappsilber J; Earnshaw WC
    J Cell Biol; 2012 Nov; 199(5):755-70. PubMed ID: 23166350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin.
    Thattikota Y; Tollis S; Palou R; Vinet J; Tyers M; D'Amours D
    Mol Cell; 2018 Feb; 69(4):664-676.e5. PubMed ID: 29452641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.