These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28904136)

  • 21. Antennal mechanosensory neurons mediate wing motor reflexes in flying Drosophila.
    Mamiya A; Dickinson MH
    J Neurosci; 2015 May; 35(20):7977-91. PubMed ID: 25995481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representation of Haltere Oscillations and Integration with Visual Inputs in the Fly Central Complex.
    Kathman ND; Fox JL
    J Neurosci; 2019 May; 39(21):4100-4112. PubMed ID: 30877172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single mechanosensory neurons encode lateral displacements using precise spike timing and thresholds.
    Yarger AM; Fox JL
    Proc Biol Sci; 2018 Sep; 285(1887):. PubMed ID: 30232160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Haltere mechanosensory influence on tethered flight behavior in Drosophila.
    Mureli S; Fox JL
    J Exp Biol; 2015 Aug; 218(Pt 16):2528-37. PubMed ID: 26113141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensors and sensory processing for airborne vibrations in silk moths and honeybees.
    Ai H
    Sensors (Basel); 2013 Jul; 13(7):9344-63. PubMed ID: 23877129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pattern of campaniform sensilla on the wing and haltere of Drosophila melanogaster and several of its homeotic mutants.
    Cole ES; Palka J
    J Embryol Exp Morphol; 1982 Oct; 71():41-61. PubMed ID: 6818316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.
    Kim JK; Han JS; Lee JS; Han JH
    Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic diversity suggests expanded roles for fly halteres.
    Hall JM; McLoughlin DP; Kathman ND; Yarger AM; Mureli S; Fox JL
    Biol Lett; 2015 Nov; 11(11):. PubMed ID: 26601682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antennal mechanosensors mediate flight control in moths.
    Sane SP; Dieudonné A; Willis MA; Daniel TL
    Science; 2007 Feb; 315(5813):863-6. PubMed ID: 17290001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical basis of wing and haltere coordination in flies.
    Deora T; Singh AK; Sane SP
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1481-6. PubMed ID: 25605915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta.
    Frye MA
    J Exp Biol; 2001 Nov; 204(Pt 21):3683-91. PubMed ID: 11719532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological properties, time of development, and central projection are correlated in the wing mechanoreceptors of Drosophila.
    Dickinson MH; Palka J
    J Neurosci; 1987 Dec; 7(12):4201-8. PubMed ID: 3694271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.
    Sponberg S; Daniel TL; Fairhall AL
    PLoS Comput Biol; 2015 Apr; 11(4):e1004168. PubMed ID: 25919482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The sensory projections of Drosophila mutants which show abnormal wing formation or flying behavior.
    Inestrosa NC; Sunkel C; Arriagada J
    Brain Res; 1987 Jul; 416(2):248-56. PubMed ID: 3113669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta.
    Dieudonné A; Daniel TL; Sane SP
    J Exp Biol; 2014 Sep; 217(Pt 17):3045-56. PubMed ID: 24948632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual input to the efferent control system of a fly's "gyroscope".
    Chan WP; Prete F; Dickinson MH
    Science; 1998 Apr; 280(5361):289-92. PubMed ID: 9535659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wireless stimulation of antennal muscles in freely flying hawkmoths leads to flight path changes.
    Hinterwirth AJ; Medina B; Lockey J; Otten D; Voldman J; Lang JH; Hildebrand JG; Daniel TL
    PLoS One; 2012; 7(12):e52725. PubMed ID: 23300751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.