These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28904334)

  • 1. The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet.
    Iverson NA; Lieb-Lappen R; Dunbar NW; Obbard R; Kim E; Golden E
    Sci Rep; 2017 Sep; 7(1):11457. PubMed ID: 28904334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica.
    Turney CSM; Fogwill CJ; Golledge NR; McKay NP; van Sebille E; Jones RT; Etheridge D; Rubino M; Thornton DP; Davies SM; Ramsey CB; Thomas ZA; Bird MI; Munksgaard NC; Kohno M; Woodward J; Winter K; Weyrich LS; Rootes CM; Millman H; Albert PG; Rivera A; van Ommen T; Curran M; Moy A; Rahmstorf S; Kawamura K; Hillenbrand CD; Weber ME; Manning CJ; Young J; Cooper A
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):3996-4006. PubMed ID: 32047039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts.
    Bingham RG; Ferraccioli F; King EC; Larter RD; Pritchard HD; Smith AM; Vaughan DG
    Nature; 2012 Jul; 487(7408):468-71. PubMed ID: 22837002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of an active volcanic heat source beneath the Pine Island Glacier.
    Loose B; Naveira Garabato AC; Schlosser P; Jenkins WJ; Vaughan D; Heywood KJ
    Nat Commun; 2018 Jun; 9(1):2431. PubMed ID: 29934507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum.
    Frisia S; Weyrich LS; Hellstrom J; Borsato A; Golledge NR; Anesio AM; Bajo P; Drysdale RN; Augustinus PC; Rivard C; Cooper A
    Nat Commun; 2017 Jun; 8():15425. PubMed ID: 28598412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling West Antarctic ice sheet growth and collapse through the past five million years.
    Pollard D; DeConto RM
    Nature; 2009 Mar; 458(7236):329-32. PubMed ID: 19295608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years.
    Hein AS; Woodward J; Marrero SM; Dunning SA; Steig EJ; Freeman SP; Stuart FM; Winter K; Westoby MJ; Sugden DE
    Nat Commun; 2016 Feb; 7():10325. PubMed ID: 26838462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High geothermal heat flux measured below the West Antarctic Ice Sheet.
    Fisher AT; Mankoff KD; Tulaczyk SM; Tyler SW; Foley N;
    Sci Adv; 2015 Jul; 1(6):e1500093. PubMed ID: 26601210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet.
    Schroeder DM; Blankenship DD; Young DA; Quartini E
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9070-2. PubMed ID: 24927578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet.
    Pattyn F; Carter SP; Thoma M
    Philos Trans A Math Phys Eng Sci; 2016 Jan; 374(2059):. PubMed ID: 26667909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification, examination and exploration of Antarctic subglacial lakes.
    Siegert MJ
    Sci Prog; 2000; 83 ( Pt 3)():223-42. PubMed ID: 11077478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles.
    Piccione G; Blackburn T; Tulaczyk S; Rasbury ET; Hain MP; Ibarra DE; Methner K; Tinglof C; Cheney B; Northrup P; Licht K
    Nat Commun; 2022 Sep; 13(1):5428. PubMed ID: 36109505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials.
    Wilson DJ; Bertram RA; Needham EF; van de Flierdt T; Welsh KJ; McKay RM; Mazumder A; Riesselman CR; Jimenez-Espejo FJ; Escutia C
    Nature; 2018 Sep; 561(7723):383-386. PubMed ID: 30232420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Episodes of Early Pleistocene West Antarctic Ice Sheet Retreat Recorded by Iceberg Alley Sediments.
    Bailey I; Hemming S; Reilly BT; Rollinson G; Williams T; Weber ME; Raymo ME; Peck VL; Ronge TA; Brachfeld S; O'Connell S; Tauxe L; Warnock JP; Armbrecht L; Cardillo FG; Du Z; Fauth G; Garcia M; Glueder A; Guitard M; Gutjahr M; Hernández-Almeida I; Hoem FS; Hwang JH; Iizuka M; Kato Y; Kenlee B; Martos YM; Pérez LF; Seki O; Tripathi S; Zheng X
    Paleoceanogr Paleoclimatol; 2022 Jul; 37(7):e2022PA004433. PubMed ID: 36247355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subglacial discharge accelerates future retreat of Denman and Scott Glaciers, East Antarctica.
    Pelle T; Greenbaum JS; Dow CF; Jenkins A; Morlighem M
    Sci Adv; 2023 Oct; 9(43):eadi9014. PubMed ID: 37889971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene.
    Santibáñez PA; Maselli OJ; Greenwood MC; Grieman MM; Saltzman ES; McConnell JR; Priscu JC
    Glob Chang Biol; 2018 May; 24(5):2182-2197. PubMed ID: 29322639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials.
    Crotti I; Quiquet A; Landais A; Stenni B; Wilson DJ; Severi M; Mulvaney R; Wilhelms F; Barbante C; Frezzotti M
    Nat Commun; 2022 Sep; 13(1):5328. PubMed ID: 36088458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse.
    Holloway MD; Sime LC; Singarayer JS; Tindall JC; Bunch P; Valdes PJ
    Nat Commun; 2016 Aug; 7():12293. PubMed ID: 27526639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet.
    Hein AS; Marrero SM; Woodward J; Dunning SA; Winter K; Westoby MJ; Freeman SP; Shanks RP; Sugden DE
    Nat Commun; 2016 Aug; 7():12511. PubMed ID: 27545202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude.
    Marschalek JW; Zurli L; Talarico F; van de Flierdt T; Vermeesch P; Carter A; Beny F; Bout-Roumazeilles V; Sangiorgi F; Hemming SR; Pérez LF; Colleoni F; Prebble JG; van Peer TE; Perotti M; Shevenell AE; Browne I; Kulhanek DK; Levy R; Harwood D; Sullivan NB; Meyers SR; Griffith EM; Hillenbrand CD; Gasson E; Siegert MJ; Keisling B; Licht KJ; Kuhn G; Dodd JP; Boshuis C; De Santis L; McKay RM;
    Nature; 2021 Dec; 600(7889):450-455. PubMed ID: 34912089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.