These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28904384)

  • 1. Targeting the vulnerability to NAD
    Takao S; Chien W; Madan V; Lin DC; Ding LW; Sun QY; Mayakonda A; Sudo M; Xu L; Chen Y; Jiang YY; Gery S; Lill M; Park E; Senapedis W; Baloglu E; Müschen M; Koeffler HP
    Leukemia; 2018 Mar; 32(3):616-625. PubMed ID: 28904384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual and Specific Inhibition of NAMPT and PAK4 By KPT-9274 Decreases Kidney Cancer Growth.
    Abu Aboud O; Chen CH; Senapedis W; Baloglu E; Argueta C; Weiss RH
    Mol Cancer Ther; 2016 Sep; 15(9):2119-29. PubMed ID: 27390344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenström Macroglobulinemia.
    Li N; Lopez MA; Linares M; Kumar S; Oliva S; Martinez-Lopez J; Xu L; Xu Y; Perini T; Senapedis W; Baloglu E; Shammas MA; Hunter Z; Anderson KC; Treon SP; Munshi NC; Fulciniti M
    Clin Cancer Res; 2019 Jan; 25(1):369-377. PubMed ID: 30206161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticystogenic activity of a small molecule PAK4 inhibitor may be a novel treatment for autosomal dominant polycystic kidney disease.
    Hwang VJ; Zhou X; Chen X; Trott J; Abu Aboud O; Shim K; Dionne LK; Chmiel KJ; Senapedis W; Baloglu E; Mahjoub MR; Li X; Weiss RH
    Kidney Int; 2017 Oct; 92(4):922-933. PubMed ID: 28545714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth.
    Rane C; Senapedis W; Baloglu E; Landesman Y; Crochiere M; Das-Gupta S; Minden A
    Sci Rep; 2017 Feb; 7():42555. PubMed ID: 28198380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia.
    Mitchell SR; Larkin K; Grieselhuber NR; Lai TH; Cannon M; Orwick S; Sharma P; Asemelash Y; Zhang P; Goettl VM; Beaver L; Mims A; Puduvalli VK; Blachly JS; Lehman A; Harrington B; Henderson S; Breitbach JT; Williams KE; Dong S; Baloglu E; Senapedis W; Kirschner K; Sampath D; Lapalombella R; Byrd JC
    Blood Adv; 2019 Feb; 3(3):242-255. PubMed ID: 30692102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-inhibition of NAMPT and PAK4 induces anti-tumor effects in 3D-spheroids model of platinum-resistant ovarian cancer.
    Kudo K; Greer YE; Yoshida T; Harrington BS; Korrapati S; Shibuya Y; Henegar L; Kopp JB; Fujii T; Lipkowitz S; Annunziata CM
    Cancer Gene Ther; 2024 May; 31(5):721-735. PubMed ID: 38424218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition.
    Zucal C; D'Agostino VG; Casini A; Mantelli B; Thongon N; Soncini D; Caffa I; Cea M; Ballestrero A; Quattrone A; Indraccolo S; Nencioni A; Provenzani A
    BMC Cancer; 2015 Nov; 15():855. PubMed ID: 26542945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.
    Cea M; Cagnetta A; Fulciniti M; Tai YT; Hideshima T; Chauhan D; Roccaro A; Sacco A; Calimeri T; Cottini F; Jakubikova J; Kong SY; Patrone F; Nencioni A; Gobbi M; Richardson P; Munshi N; Anderson KC
    Blood; 2012 Oct; 120(17):3519-29. PubMed ID: 22955917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors.
    Chini CC; Guerrico AM; Nin V; Camacho-Pereira J; Escande C; Barbosa MT; Chini EN
    Clin Cancer Res; 2014 Jan; 20(1):120-30. PubMed ID: 24025713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High expression of NAMPT in adult T-cell leukemia/lymphoma and anti-tumor activity of a NAMPT inhibitor.
    Kozako T; Aikawa A; Ohsugi T; Uchida YI; Kato N; Sato K; Ishitsuka K; Yoshimitsu M; Honda SI
    Eur J Pharmacol; 2019 Dec; 865():172738. PubMed ID: 31614144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status.
    Cea M; Cagnetta A; Acharya C; Acharya P; Tai YT; Yang C; Lovera D; Soncini D; Miglino M; Fraternali-Orcioni G; Mastracci L; Nencioni A; Montecucco F; Monacelli F; Ballestrero A; Hideshima T; Chauhan D; Gobbi M; Lemoli RM; Munshi N; Treon SP; Anderson KC
    Clin Cancer Res; 2016 Dec; 22(24):6099-6109. PubMed ID: 27287071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase.
    Zhang LY; Liu LY; Qie LL; Ling KN; Xu LH; Wang F; Fang SH; Lu YB; Hu H; Wei EQ; Zhang WP
    Eur J Pharmacol; 2012 Jan; 674(2-3):163-70. PubMed ID: 22119381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies.
    Nahimana A; Attinger A; Aubry D; Greaney P; Ireson C; Thougaard AV; Tjørnelund J; Dawson KM; Dupuis M; Duchosal MA
    Blood; 2009 Apr; 113(14):3276-86. PubMed ID: 19196867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting NAMPT for Therapeutic Intervention in Cancer and Inflammation: Structure-Based Drug Design and Biological Screening.
    Pulla VK; Sriram DS; Soni V; Viswanadha S; Sriram D; Yogeeswari P
    Chem Biol Drug Des; 2015 Oct; 86(4):881-94. PubMed ID: 25850461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD
    Guo J; Lam LT; Longenecker KL; Bui MH; Idler KB; Glaser KB; Wilsbacher JL; Tse C; Pappano WN; Huang TH
    Biochem Biophys Res Commun; 2017 Sep; 491(3):681-686. PubMed ID: 28756225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion.
    Tateishi K; Wakimoto H; Iafrate AJ; Tanaka S; Loebel F; Lelic N; Wiederschain D; Bedel O; Deng G; Zhang B; He T; Shi X; Gerszten RE; Zhang Y; Yeh JJ; Curry WT; Zhao D; Sundaram S; Nigim F; Koerner MVA; Ho Q; Fisher DE; Roider EM; Kemeny LV; Samuels Y; Flaherty KT; Batchelor TT; Chi AS; Cahill DP
    Cancer Cell; 2015 Dec; 28(6):773-784. PubMed ID: 26678339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models.
    O'Brien T; Oeh J; Xiao Y; Liang X; Vanderbilt A; Qin A; Yang L; Lee LB; Ly J; Cosino E; LaCap JA; Ogasawara A; Williams S; Nannini M; Liederer BM; Jackson P; Dragovich PS; Sampath D
    Neoplasia; 2013 Dec; 15(12):1314-29. PubMed ID: 24403854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms.
    Zhang XQ; Lu JT; Jiang WX; Lu YB; Wu M; Wei EQ; Zhang WP; Tang C
    Neuroscience; 2015 Apr; 291():230-40. PubMed ID: 25684751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of nicotinamide phosphoribosyltransferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma.
    Wang XY; Wang JZ; Gao L; Zhang FY; Wang Q; Liu KJ; Xiang B
    Toxicol Appl Pharmacol; 2017 Sep; 331():54-61. PubMed ID: 28501332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.