These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28904837)

  • 1. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.
    Prieto G; Bakoglidis KD; Tuckart WR; Broitman E
    Beilstein J Nanotechnol; 2017; 8():1760-1768. PubMed ID: 28904837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure Evolution and Nanotribological Properties of Different Heat-Treated AISI 420 Stainless Steels after Proton Irradiation.
    Dai LY; Niu GY; Ma MZ
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31142043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel.
    Xu G; Huang P; Feng Z; Wei Z; Zu G
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure, Mechanical and Wear Behaviour of Deep Cryogenically Treated EN 52 Silchrome Valve Steel.
    Saranraj I; Ganesan S; Čepová L; Elangovan M; Beránek L
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel.
    Xiong Y; Yue Y; He T; Lu Y; Ren F; Cao W
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotribological response of a plasma nitrided bio-steel.
    Samanta A; Chakraborty H; Bhattacharya M; Ghosh J; Sreemany M; Bysakh S; Rane R; Joseph A; Jhala G; Mukherjee S; Das M; Mukhopadhyay AK
    J Mech Behav Biomed Mater; 2017 Jan; 65():584-599. PubMed ID: 27721175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Carbon on the Microstructure Evolution and Hardness of Fe-13Cr-xC (x = 0-0.7 wt.%) Stainless Steel.
    Harwarth M; Brauer A; Huang Q; Pourabdoli M; Mola J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cu on the Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Steel.
    Ma J; Song Y; Jiang H; Rong L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance.
    Jurči P; Dlouhý I
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wear resistance of an additively manufactured high-carbon martensitic stainless steel.
    Iakovakis E; Avcu E; Roy MJ; Gee M; Matthews A
    Sci Rep; 2022 Jul; 12(1):12554. PubMed ID: 35869110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cryogenic Treatments on Hardness, Fracture Toughness, and Wear Properties of Vanadis 6 Tool Steel.
    Yarasu V; Jurci P; Ptacinova J; Dlouhy I; Hornik J
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically induced annealing of stainless-steel surfaces.
    Burstein GT; Hutchings IM; Sasaki K
    Nature; 2000 Oct; 407(6806):885-7. PubMed ID: 11057662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abrasive Wear Behavior of Cryogenically Treated Boron Steel (30MnCrB4) Used for Rotavator Blades.
    Singh TP; Singla AK; Singh J; Singh K; Gupta MK; Ji H; Song Q; Liu Z; Pruncu CI
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the Role of Titanium and Iron Cathodic Cages on Plasma-Nitrided AISI 430 Ferritic Stainless Steel.
    Babur MZ; Noori AS; Iqbal Z; Shafiq M; Asghar M; Alghtani AH; Tirth V; Algahtani A; Zaman A
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation-Induced Martensitic Transformation in Laser Cladded 304 Stainless Steel Coatings.
    Zeuner AT; Gerdt L; Ostwald A; Grün P; Barbosa M; Kaspar J; Zimmermann M
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Cu on the Formation of Reversed Austenite in Super Martensitic Stainless Steel.
    Jiang W; Zhao K
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions.
    Gong N; Hu C; Hu B; An B; Misra RDK
    J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method.
    Zhang H; Wei Z; Xie F; Sun B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels.
    Pańcikiewicz K; Świerczyńska A; Hućko P; Tumidajewicz M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.