These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 2890492)
1. Characterization of some monooxygenase activities and solubilization of hepatic cytochrome P-450 in two species of freshwater fish, the nase (Chondrostoma nasus) and the roach (Rutilus rutilus). Monod G; Devaux A; Rivière JL Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 88(1):83-9. PubMed ID: 2890492 [TBL] [Abstract][Full Text] [Related]
2. Effects of chemical pollution on the activities of hepatic xenobiotic metabolizing enzymes in fish from the River Rhône. Monod G; Devaux A; Riviere JL Sci Total Environ; 1988 Jul; 73(3):189-201. PubMed ID: 3145559 [TBL] [Abstract][Full Text] [Related]
3. beta-Naphthoflavone-inducible cytochrome P4501A1 activity in liver microsomes of the marine safi fish (Siganus canaliculatus). Raza H; Otaiba A; Montague W Biochem Pharmacol; 1995 Oct; 50(9):1401-6. PubMed ID: 7503790 [TBL] [Abstract][Full Text] [Related]
4. Use of the fish cytochrome P-450-dependent 7-ethylresorufin O-deethylase activity as a biochemical indicator of water pollution. Study of the liver and the kidney of male and female nase (Chondrostoma nasus) from the River Rhône. Masfaraud JF; Monod G; Devaux A Sci Total Environ; 1990 Nov; 97-98():729-38. PubMed ID: 2128133 [TBL] [Abstract][Full Text] [Related]
5. Covalent binding of benzo[a]pyrene to cytochrome P-450 beta NF-B2 and other proteins in reconstituted mixed-function oxidase systems. Schelin C; Wallin H; Halpert J; Jergil B Chem Biol Interact; 1984 May; 49(3):269-81. PubMed ID: 6327095 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Kanaeva IP; Nikityuk OV; Davydov DR; Dedinskii IR; Koen YM; Kuznetsova GP; Skotselyas ED; Bachmanova GI; Archakov AI Arch Biochem Biophys; 1992 Nov; 298(2):403-12. PubMed ID: 1416971 [TBL] [Abstract][Full Text] [Related]
7. Xenobiotic-metabolizing enzyme systems in test fish. I. Comparative studies of liver microsomal monooxygenases. Funari E; Zoppini A; Verdina A; De Angelis G; Vittozzi L Ecotoxicol Environ Saf; 1987 Feb; 13(1):24-31. PubMed ID: 3830019 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. I. Properties of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) monomers. Kanaeva IP; Dedinskii IR; Skotselyas ED; Krainev AG; Guleva IV; Sevryukova IF; Koen YM; Kuznetsova GP; Bachmanova GI; Archakov AI Arch Biochem Biophys; 1992 Nov; 298(2):395-402. PubMed ID: 1416970 [TBL] [Abstract][Full Text] [Related]
10. The first record of a natural hybrid of the roach Rutilus rutilus and nase Chondrostoma nasus in the Danube River Basin, Czech Republic: morphological, karyological and molecular characteristics. Vetesník L; Halacka K; Papousek I; Mendel J; Simková A J Fish Biol; 2009 May; 74(7):1669-76. PubMed ID: 20735664 [TBL] [Abstract][Full Text] [Related]
11. The effects of phosphatase on the components of the cytochrome P-450-dependent microsomal monooxygenase. Taniguchi H; Pyerin W Biochim Biophys Acta; 1987 Apr; 912(3):295-302. PubMed ID: 3105584 [TBL] [Abstract][Full Text] [Related]
12. Isolation of cytochrome P450 from hepatopancreas microsomes of the spiny lobster, Panulirus argus, and determination of catalytic activity with NADPH cytochrome P450 reductase from vertebrate liver. James MO Arch Biochem Biophys; 1990 Oct; 282(1):8-17. PubMed ID: 2171437 [TBL] [Abstract][Full Text] [Related]
13. Xenobiotic biotransformation in the rainbow trout liver and kidney during starvation. Andersson T; Koivusaari U; Förlin L Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 82(1):221-5. PubMed ID: 2865067 [TBL] [Abstract][Full Text] [Related]
14. Effect of dietary butylated hydroxyanisole on the mouse hepatic monooxygenase system of nuclear and microsomal fractions. Hennig EE; Demkowicz-Dobrzański KK; Sawicki JT; Mojska H; Kujawa M Carcinogenesis; 1983 Oct; 4(10):1243-6. PubMed ID: 6311449 [TBL] [Abstract][Full Text] [Related]
15. Effects of phenobarbitone and beta-naphthoflavone on hepatic microsomal drug metabolising enzymes of the male beagle dog. McKillop D Biochem Pharmacol; 1985 Sep; 34(17):3137-42. PubMed ID: 3929785 [TBL] [Abstract][Full Text] [Related]
16. Monooxygenase activity of fish liver in biomonitoring aquatic environment. Julkunen A; Schiller F; Müller D; Klinger W; Hänninen O Arch Toxicol Suppl; 1986; 9():378-81. PubMed ID: 3492989 [TBL] [Abstract][Full Text] [Related]
17. An aryl hydrocarbon hydroxylating hepatic cytochrome P-450 from the marine fish Stenotomus chrysops. Klotz AV; Stegeman JJ; Walsh C Arch Biochem Biophys; 1983 Oct; 226(2):578-92. PubMed ID: 6314907 [TBL] [Abstract][Full Text] [Related]
18. On the possible in vitro use of perfluoro compounds as oxygen reservoir for the microsomal monooxygenase system. Brown NA; Netter KJ; Bridges JW Biochem Pharmacol; 1979 Sep; 28(18):2850-2. PubMed ID: 115475 [No Abstract] [Full Text] [Related]
19. 7-Ethoxycoumarin dealkylase and cytochrome P-450 from grey partridge (Perdix perdix) hepatic and duodenal microsomes. Rivière JL Biochem Biophys Res Commun; 1980 Nov; 97(2):546-52. PubMed ID: 6781496 [No Abstract] [Full Text] [Related]
20. Substrate specificity of the mouse skin mixed-function oxidase system. Rettie AE; Williams FM; Rawlins MD Xenobiotica; 1986 Mar; 16(3):205-11. PubMed ID: 3705617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]