BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28905403)

  • 1. Infectious disease prediction with kernel conditional density estimation.
    Ray EL; Sakrejda K; Lauer SA; Johansson MA; Reich NG
    Stat Med; 2017 Dec; 36(30):4908-4929. PubMed ID: 28905403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model.
    Lu J; Meyer S
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32098038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of infectious disease epidemics via weighted density ensembles.
    Ray EL; Reich NG
    PLoS Comput Biol; 2018 Feb; 14(2):e1005910. PubMed ID: 29462167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using prediction markets of market scoring rule to forecast infectious diseases: a case study in Taiwan.
    Tung CY; Chou TC; Lin JW
    BMC Public Health; 2015 Aug; 15():766. PubMed ID: 26259612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling seasonality in space-time infectious disease surveillance data.
    Held L; Paul M
    Biom J; 2012 Nov; 54(6):824-43. PubMed ID: 23034894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil.
    Lowe R; Bailey TC; Stephenson DB; Jupp TE; Graham RJ; Barcellos C; Carvalho MS
    Stat Med; 2013 Feb; 32(5):864-83. PubMed ID: 22927252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand.
    Reich NG; Lauer SA; Sakrejda K; Iamsirithaworn S; Hinjoy S; Suangtho P; Suthachana S; Clapham HE; Salje H; Cummings DA; Lessler J
    PLoS Negl Trop Dis; 2016 Jun; 10(6):e0004761. PubMed ID: 27304062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Seasonal Influenza Based on SARIMA Model, in Mainland China from 2005 to 2018.
    Cong J; Ren M; Xie S; Wang P
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31783697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influenza epidemic surveillance and prediction based on electronic health record data from an out-of-hours general practitioner cooperative: model development and validation on 2003-2015 data.
    Michiels B; Nguyen VK; Coenen S; Ryckebosch P; Bossuyt N; Hens N
    BMC Infect Dis; 2017 Jan; 17(1):84. PubMed ID: 28100186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonality of infectious diseases.
    Fisman DN
    Annu Rev Public Health; 2007; 28():127-43. PubMed ID: 17222079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of autoregressive integrated moving average model in predicting the reported notifiable communicable diseases in China].
    Shen ZZ; Ma S; Qu YM; Jiang Y
    Zhonghua Liu Xing Bing Xue Za Zhi; 2017 Dec; 38(12):1708-1712. PubMed ID: 29294592
    [No Abstract]   [Full Text] [Related]  

  • 12. Assessing Seasonality Variation with Harmonic Regression: Accommodations for Sharp Peaks.
    Ramanathan K; Thenmozhi M; George S; Anandan S; Veeraraghavan B; Naumova EN; Jeyaseelan L
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32085630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of significant factors for dengue fever incidence prediction.
    Siriyasatien P; Phumee A; Ongruk P; Jampachaisri K; Kesorn K
    BMC Bioinformatics; 2016 Apr; 17():166. PubMed ID: 27083696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the temporal modelling for prediction of dengue infection in northern and north-eastern, Thailand.
    Wongkoon S; Jaroensutasinee M; Jaroensutasinee K
    Trop Biomed; 2012 Sep; 29(3):339-48. PubMed ID: 23018496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The utility of LASSO-based models for real time forecasts of endemic infectious diseases: A cross country comparison.
    Chen Y; Chu CW; Chen MIC; Cook AR
    J Biomed Inform; 2018 May; 81():16-30. PubMed ID: 29496631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models.
    Baquero OS; Santana LMR; Chiaravalloti-Neto F
    PLoS One; 2018; 13(4):e0195065. PubMed ID: 29608586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internet-based surveillance systems for monitoring emerging infectious diseases.
    Milinovich GJ; Williams GM; Clements AC; Hu W
    Lancet Infect Dis; 2014 Feb; 14(2):160-8. PubMed ID: 24290841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting incidence of dengue in Rajasthan, using time series analyses.
    Bhatnagar S; Lal V; Gupta SD; Gupta OP
    Indian J Public Health; 2012; 56(4):281-5. PubMed ID: 23354138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time series analysis of dengue incidence in Rio de Janeiro, Brazil.
    Luz PM; Mendes BV; Codeço CT; Struchiner CJ; Galvani AP
    Am J Trop Med Hyg; 2008 Dec; 79(6):933-9. PubMed ID: 19052308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal patterns of dengue fever and associated climate factors in 4 provinces in Vietnam from 1994 to 2013.
    Lee HS; Nguyen-Viet H; Nam VS; Lee M; Won S; Duc PP; Grace D
    BMC Infect Dis; 2017 Mar; 17(1):218. PubMed ID: 28320341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.