BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28905403)

  • 21. Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand.
    Rotejanaprasert C; Ekapirat N; Areechokchai D; Maude RJ
    Int J Health Geogr; 2020 Mar; 19(1):4. PubMed ID: 32126997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data.
    Buczak AL; Koshute PT; Babin SM; Feighner BH; Lewis SH
    BMC Med Inform Decis Mak; 2012 Nov; 12():124. PubMed ID: 23126401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador.
    Lowe R; Stewart-Ibarra AM; Petrova D; García-Díez M; Borbor-Cordova MJ; Mejía R; Regato M; Rodó X
    Lancet Planet Health; 2017 Jul; 1(4):e142-e151. PubMed ID: 29851600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.
    Shi Y; Liu X; Kok SY; Rajarethinam J; Liang S; Yap G; Chong CS; Lee KS; Tan SS; Chin CK; Lo A; Kong W; Ng LC; Cook AR
    Environ Health Perspect; 2016 Sep; 124(9):1369-75. PubMed ID: 26662617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions.
    Brooks LC; Farrow DC; Hyun S; Tibshirani RJ; Rosenfeld R
    PLoS Comput Biol; 2018 Jun; 14(6):e1006134. PubMed ID: 29906286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A kernel-based spatio-temporal surveillance system for monitoring influenza-like illness incidence.
    Martinez-Beneito MA; Botella-Rocamora P; Zurriaga O
    Stat Methods Med Res; 2011 Apr; 20(2):103-18. PubMed ID: 20519260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing a dengue forecast model using machine learning: A case study in China.
    Guo P; Liu T; Zhang Q; Wang L; Xiao J; Zhang Q; Luo G; Li Z; He J; Zhang Y; Ma W
    PLoS Negl Trop Dis; 2017 Oct; 11(10):e0005973. PubMed ID: 29036169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stochastic modelling of infectious diseases for heterogeneous populations.
    Ming RX; Liu JM; W Cheung WK; Wan X
    Infect Dis Poverty; 2016 Dec; 5(1):107. PubMed ID: 28003016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods to assess seasonal effects in epidemiological studies of infectious diseases--exemplified by application to the occurrence of meningococcal disease.
    Christiansen CF; Pedersen L; Sørensen HT; Rothman KJ
    Clin Microbiol Infect; 2012 Oct; 18(10):963-9. PubMed ID: 22817396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nowcasting influenza epidemics using non-homogeneous hidden Markov models.
    Nunes B; Natário I; Lucília Carvalho M
    Stat Med; 2013 Jul; 32(15):2643-60. PubMed ID: 23124850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Why should we apply ABM for decision analysis for infectious diseases?-An example for dengue interventions.
    Miksch F; Jahn B; Espinosa KJ; Chhatwal J; Siebert U; Popper N
    PLoS One; 2019; 14(8):e0221564. PubMed ID: 31454373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical analysis and prediction on incidence of infectious diseases based on trend and seasonality.
    Kakehashi M; Tsuru S; Seo A; Amran A; Yoshinaga F
    Nihon Eiseigaku Zasshi; 1993 Jun; 48(2):578-85. PubMed ID: 8336385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ensemble model for forecasting infectious diseases in India.
    Shashvat K; Basu R; Bhondekar PA; Kaur A
    Trop Biomed; 2019 Dec; 36(4):822-832. PubMed ID: 33597454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico.
    Johansson MA; Reich NG; Hota A; Brownstein JS; Santillana M
    Sci Rep; 2016 Sep; 6():33707. PubMed ID: 27665707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utility of mosquito surveillance data for spatial prioritization of vector control against dengue viruses in three Brazilian cities.
    Pepin KM; Leach CB; Marques-Toledo C; Laass KH; Paixao KS; Luis AD; Hayman DT; Johnson NG; Buhnerkempe MG; Carver S; Grear DA; Tsao K; Eiras AE; Webb CT
    Parasit Vectors; 2015 Feb; 8():98. PubMed ID: 25889533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Detection and Prediction of Influenza Activity for Real-Time Surveillance: Algorithm Design.
    Spreco A; Eriksson O; Dahlström Ö; Cowling BJ; Timpka T
    J Med Internet Res; 2017 Jun; 19(6):e211. PubMed ID: 28619700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infectious diseases in Poland in 2014.
    Sadkowska-Todys MA; Zieliński A; Czarkowski MS
    Przegl Epidemiol; 2016; 70(2):167-181. PubMed ID: 27779831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and statistical methodologies to determine the distribution of dengue in Brazilian municipalities and relate incidence with the Health Vulnerability Index.
    Pastrana ME; Brito RL; Nicolino RR; de Oliveira CS; Haddad JP
    Spat Spatiotemporal Epidemiol; 2014 Oct; 11():143-51. PubMed ID: 25457603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new surveillance and spatio-temporal visualization tool SIMID: SIMulation of infectious diseases using random networks and GIS.
    Ramírez-Ramírez LL; Gel YR; Thompson M; de Villa E; McPherson M
    Comput Methods Programs Biomed; 2013 Jun; 110(3):455-70. PubMed ID: 23566710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal infectious disease epidemiology.
    Grassly NC; Fraser C
    Proc Biol Sci; 2006 Oct; 273(1600):2541-50. PubMed ID: 16959647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.