BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28905418)

  • 1. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization.
    Kamerlin SC; Sharma PK; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4075-80. PubMed ID: 20150513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward accurate screening in computer-aided enzyme design.
    Roca M; Vardi-Kilshtain A; Warshel A
    Biochemistry; 2009 Apr; 48(14):3046-56. PubMed ID: 19161327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies.
    Liu H; Warshel A
    Biochemistry; 2007 May; 46(20):6011-25. PubMed ID: 17469852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of enzyme catalysis: methods, progress, and insights.
    Warshel A
    Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much do enzymes really gain by restraining their reacting fragments?
    Shurki A; Strajbl M; Villà J; Warshel A
    J Am Chem Soc; 2002 Apr; 124(15):4097-107. PubMed ID: 11942849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preorganization and protein dynamics in enzyme catalysis.
    Rajagopalan PT; Benkovic SJ
    Chem Rec; 2002; 2(1):24-36. PubMed ID: 11933259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The entropic contributions in vitamin B12 enzymes still reflect the electrostatic paradigm.
    Schopf P; Mills MJ; Warshel A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4328-33. PubMed ID: 25805820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulations of enzyme catalysis: finding out what has been optimized by evolution.
    Warshel A; Florián J
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5950-5. PubMed ID: 9600897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds.
    Warshel A; Papazyan A
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13665-70. PubMed ID: 8942991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle.
    Smith AJ; Müller R; Toscano MD; Kast P; Hellinga HW; Hilvert D; Houk KN
    J Am Chem Soc; 2008 Nov; 130(46):15361-73. PubMed ID: 18939839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The empirical valence bond as an effective strategy for computer-aided enzyme design.
    Vardi-Kilshtain A; Roca M; Warshel A
    Biotechnol J; 2009 Apr; 4(4):495-500. PubMed ID: 19229886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochemical Coupling in Myosin.
    Lu X; Ovchinnikov V; Demapan D; Roston D; Cui Q
    Biochemistry; 2017 Mar; 56(10):1482-1497. PubMed ID: 28225609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyltransferases do not work by compression, cratic, or desolvation effects, but by electrostatic preorganization.
    Lameira J; Bora RP; Chu ZT; Warshel A
    Proteins; 2015 Feb; 83(2):318-30. PubMed ID: 25388538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute solvent dynamics and energetics in enzyme catalysis: the S(N)2 reaction of dehalogenase as a general benchmark.
    Olsson MH; Warshel A
    J Am Chem Soc; 2004 Nov; 126(46):15167-79. PubMed ID: 15548014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in optimizing enzyme electrostatic preorganization.
    Hennefarth MR; Alexandrova AN
    Curr Opin Struct Biol; 2022 Feb; 72():1-8. PubMed ID: 34280872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic contributions to binding of transition state analogues can be very different from the corresponding contributions to catalysis: phenolates binding to the oxyanion hole of ketosteroid isomerase.
    Warshel A; Sharma PK; Chu ZT; Aqvist J
    Biochemistry; 2007 Feb; 46(6):1466-76. PubMed ID: 17279612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models.
    Kamerlin SC; Chu ZT; Warshel A
    J Org Chem; 2010 Oct; 75(19):6391-401. PubMed ID: 20825150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.