BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28905895)

  • 1. Superparamagnetic enhancement of thermoelectric performance.
    Zhao W; Liu Z; Sun Z; Zhang Q; Wei P; Mu X; Zhou H; Li C; Ma S; He D; Ji P; Zhu W; Nie X; Su X; Tang X; Shen B; Dong X; Yang J; Liu Y; Shi J
    Nature; 2017 Sep; 549(7671):247-251. PubMed ID: 28905895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric Transport in Nanocomposites.
    Liu B; Hu J; Zhou J; Yang R
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Thermoelectric Performance in SnTe Nanocomposites with All-Scale Hierarchical Structures.
    Jiang Q; Hu H; Yang J; Xin J; Li S; Viola G; Yan H
    ACS Appl Mater Interfaces; 2020 May; 12(20):23102-23109. PubMed ID: 32338496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures.
    Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning phonon transport spectrum for better thermoelectric materials.
    Hori T; Shiomi J
    Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationally Designing High-Performance Bulk Thermoelectric Materials.
    Tan G; Zhao LD; Kanatzidis MG
    Chem Rev; 2016 Oct; 116(19):12123-12149. PubMed ID: 27580481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.
    Chen D; Zhao Y; Chen Y; Wang B; Chen H; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3224-30. PubMed ID: 25607423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal and thermoelectric properties of graphene.
    Xu Y; Li Z; Duan W
    Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-induced enhancement of thermoelectric performance of TiS
    Li G; Yao K; Gao G
    Nanotechnology; 2018 Jan; 29(1):015204. PubMed ID: 29125467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature thermoelectric transport behavior of the Al/γ-Al
    Samanta PN; Leszczynski J
    Phys Chem Chem Phys; 2018 May; 20(21):14513-14524. PubMed ID: 29766155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe
    Shin WH; Roh JW; Ryu B; Chang HJ; Kim HS; Lee S; Seo WS; Ahn K
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3689-3698. PubMed ID: 29303242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials.
    Zhao W; Liu Z; Wei P; Zhang Q; Zhu W; Su X; Tang X; Yang J; Liu Y; Shi J; Chao Y; Lin S; Pei Y
    Nat Nanotechnol; 2017 Jan; 12(1):55-60. PubMed ID: 27723733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials.
    He J; Sootsman JR; Girard SN; Zheng JC; Wen J; Zhu Y; Kanatzidis MG; Dravid VP
    J Am Chem Soc; 2010 Jun; 132(25):8669-75. PubMed ID: 20524606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance bulk thermoelectrics with all-scale hierarchical architectures.
    Biswas K; He J; Blum ID; Wu CI; Hogan TP; Seidman DN; Dravid VP; Kanatzidis MG
    Nature; 2012 Sep; 489(7416):414-8. PubMed ID: 22996556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon-glass electron-crystals in ZnO-multiwalled carbon nanotube nanocomposites.
    Nam WH; Kim BB; Lim YS; Dae KS; Seo WS; Park HH; Lee JY
    Nanoscale; 2017 Sep; 9(35):12941-12948. PubMed ID: 28831489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS.
    Zhao LD; He J; Hao S; Wu CI; Hogan TP; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2012 Oct; 134(39):16327-36. PubMed ID: 22991921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance.
    Hong M; Zou J; Chen ZG
    Adv Mater; 2019 Apr; 31(14):e1807071. PubMed ID: 30756468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design.
    Hong M; Chen ZG; Yang L; Zou J
    Nanoscale; 2016 Apr; 8(16):8681-6. PubMed ID: 27050933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface.
    Ishibe T; Tomeda A; Watanabe K; Kamakura Y; Mori N; Naruse N; Mera Y; Yamashita Y; Nakamura Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37709-37716. PubMed ID: 30346133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.