BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28905972)

  • 1. Red-emissive triplex-forming PNA probes carrying cyanine base surrogates for fluorescence sensing of double-stranded RNA.
    Chiba T; Sato T; Sato Y; Nishizawa S
    Org Biomol Chem; 2017 Sep; 15(37):7765-7769. PubMed ID: 28905972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.
    Sato T; Sato Y; Nishizawa S
    Chemistry; 2017 Mar; 23(17):4079-4088. PubMed ID: 27897343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplex-Forming Peptide Nucleic Acid Probe Having Thiazole Orange as a Base Surrogate for Fluorescence Sensing of Double-stranded RNA.
    Sato T; Sato Y; Nishizawa S
    J Am Chem Soc; 2016 Aug; 138(30):9397-400. PubMed ID: 27442229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-Red Light-up Signaling of Benzo[
    Yoshino Y; Sato Y; Nishizawa S
    Anal Chem; 2019 Nov; 91(22):14254-14260. PubMed ID: 31595744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual sensing of hairpin and quadruplex DNA structures using multicolored peptide nucleic acid fluorescent probes.
    Koripelly G; Meguellati K; Ladame S
    Bioconjug Chem; 2010 Nov; 21(11):2103-9. PubMed ID: 20923172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugating pyrene onto PNA-based fluorescent probes for improved detection selectivity toward double-stranded siRNA.
    Sato Y; Takahashi Y; Tanabe T; Nishizawa S
    Org Biomol Chem; 2020 Jun; 18(21):4009-4013. PubMed ID: 32420569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New cyanine dyes as base surrogates in PNA: forced intercalation probes (FIT-probes) for homogeneous SNP detection.
    Bethge L; Jarikote DV; Seitz O
    Bioorg Med Chem; 2008 Jan; 16(1):114-25. PubMed ID: 17981472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy for Internal Labeling of Large RNAs with Minimal Perturbation by Using Fluorescent PNA.
    Schmitz AG; Zelger-Paulus S; Gasser G; Sigel RK
    Chembiochem; 2015 Jun; 16(9):1302-6. PubMed ID: 25872497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key Structural Elements of Unsymmetrical Cyanine Dyes for Highly Sensitive Fluorescence Turn-On DNA Probes.
    Uno K; Sasaki T; Sugimoto N; Ito H; Nishihara T; Hagihara S; Higashiyama T; Sasaki N; Sato Y; Itami K
    Chem Asian J; 2017 Jan; 12(2):233-238. PubMed ID: 27860278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids.
    Cheruiyot SK; Rozners E
    Chembiochem; 2016 Aug; 17(16):1558-62. PubMed ID: 27223320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA.
    Brodyagin N; Hnedzko D; MacKay JA; Rozners E
    Methods Mol Biol; 2020; 2105():157-172. PubMed ID: 32088869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-templated synthesis of trimethine cyanine dyes: a versatile fluorogenic reaction for sensing G-quadruplex formation.
    Meguellati K; Koripelly G; Ladame S
    Angew Chem Int Ed Engl; 2010 Apr; 49(15):2738-42. PubMed ID: 20229556
    [No Abstract]   [Full Text] [Related]  

  • 14. Fluorescent PNA probes as hybridization labels for biological RNA.
    Robertson KL; Yu L; Armitage BA; Lopez AJ; Peteanu LA
    Biochemistry; 2006 May; 45(19):6066-74. PubMed ID: 16681379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting DNA with "light-up" pyrimidine triple-helical forming oligonucleotides conjugated to stabilizing fluorophores (LU-TFOs).
    Renard BL; Lartia R; Asseline U
    Org Biomol Chem; 2008 Dec; 6(23):4413-25. PubMed ID: 19005602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids.
    Toh DK; Patil KM; Chen G
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA.
    Zhan X; Deng L; Chen G
    Biopolymers; 2022 Feb; 113(2):e23476. PubMed ID: 34581432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and properties of peptide nucleic acid labeled at the N-terminus with HiLyte Fluor 488 fluorescent dye.
    Hnedzko D; McGee DW; Rozners E
    Bioorg Med Chem; 2016 Sep; 24(18):4199-4205. PubMed ID: 27430566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclopentane FIT-PNAs: bright RNA sensors.
    Tepper O; Zheng H; Appella DH; Yavin E
    Chem Commun (Camb); 2021 Jan; 57(4):540-543. PubMed ID: 33336664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection.
    Köhler O; Jarikote DV; Seitz O
    Chembiochem; 2005 Jan; 6(1):69-77. PubMed ID: 15584015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.