These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28906239)

  • 1. Auditory Processing Testing: In the Booth versus Outside the Booth.
    Lucker JR
    J Am Acad Audiol; 2017 Sep; 28(8):679-684. PubMed ID: 28906239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Realistic Test Conditions on Spectral and Temporal Processing in Normal-Hearing Listeners.
    Yoon YS; Boren CM; Diaz B
    Am J Audiol; 2021 Mar; 30(1):160-169. PubMed ID: 33621127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure-tone audiometry outside a sound booth using earphone attentuation, integrated noise monitoring, and automation.
    Swanepoel de W; Matthysen C; Eikelboom RH; Clark JL; Hall JW
    Int J Audiol; 2015; 54(11):777-85. PubMed ID: 26514954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting Audiology Procedures During the Pandemic: Validity and Efficacy of Testing Outside a Sound Booth.
    Serpanos YC; Hobbs M; Nunez K; Gambino L; Butler J
    Am J Audiol; 2022 Mar; 31(1):91-100. PubMed ID: 34965363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical experience with the words-in-noise test on 3430 veterans: comparisons with pure-tone thresholds and word recognition in quiet.
    Wilson RH
    J Am Acad Audiol; 2011; 22(7):405-23. PubMed ID: 21993048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of auditory processing in 6- to 11-yr-old children.
    Moore DR; Cowan JA; Riley A; Edmondson-Jones AM; Ferguson MA
    Ear Hear; 2011; 32(3):269-85. PubMed ID: 21233712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic pure-tone audiometry in schools: mobile testing without a sound-treated environment.
    Swanepoel de W; Maclennan-Smith F; Hall JW
    J Am Acad Audiol; 2013; 24(10):992-1000. PubMed ID: 24384084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Audiometry in Quiet and Simulated Exam Room Noise for Listeners with Normal Hearing and Impaired Hearing.
    Bean BN; Roberts RA; Picou EM; Angley GP; Edwards AJ
    J Am Acad Audiol; 2022 Jan; 33(1):6-13. PubMed ID: 34034339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended High-Frequency Audiometry using the Wireless Automated Hearing Test System Compared to Manual Audiometry in Children and Adolescents.
    Blankenship CM; Hickson LM; Quigley T; Larsen E; Lin L; Hunter LL
    medRxiv; 2023 May; ():. PubMed ID: 37292836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agreement between hearing thresholds measured in non-soundproof work environments and a soundproof booth.
    Wong TW; Yu TS; Chen WQ; Chiu YL; Wong CN; Wong AH
    Occup Environ Med; 2003 Sep; 60(9):667-71. PubMed ID: 12937188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between high-frequency pure-tone hearing loss, hearing in noise test (HINT) thresholds, and the articulation index.
    Vermiglio AJ; Soli SD; Freed DJ; Fisher LM
    J Am Acad Audiol; 2012; 23(10):779-88. PubMed ID: 23169195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of Mobile-Based Audiometry in the Evaluation of Hearing Loss in Quiet and Noisy Environments.
    Saliba J; Al-Reefi M; Carriere JS; Verma N; Provencal C; Rappaport JM
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):706-711. PubMed ID: 28025906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambient noise impact on accuracy of automated hearing assessment.
    Storey KK; Muñoz K; Nelson L; Larsen J; White K
    Int J Audiol; 2014 Oct; 53(10):730-6. PubMed ID: 24909592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brainstem Evoked Potential Indices of Subcortical Auditory Processing After Mild Traumatic Brain Injury.
    Vander Werff KR; Rieger B
    Ear Hear; 2017; 38(4):e200-e214. PubMed ID: 28319479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Can We Learn about Auditory Processing from Adult Hearing Questionnaires?
    Bamiou DE; Iliadou VV; Zanchetta S; Spyridakou C
    J Am Acad Audiol; 2015; 26(10):824-37. PubMed ID: 26554488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Accuracy of IOS Device-based uHear as a Screening Tool for Hearing Loss: A Preliminary Study From the Middle East.
    Al-Abri R; Al-Balushi M; Kolethekkat A; Bhargava D; Al-Alwi A; Al-Bahlani H; Al-Garadi M
    Oman Med J; 2016 Mar; 31(2):142-5. PubMed ID: 27168926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing Auditory Processing Abilities in Typically Developing School-Aged Children.
    McDermott EE; Smart JL; Boiano JA; Bragg LE; Colon TN; Hanson EM; Emanuel DC; Kelly AS
    J Am Acad Audiol; 2016 Feb; 27(2):72-84. PubMed ID: 26905528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Realistic Test Conditions on Perception of Speech, Music, and Binaural Cues in Normal-Hearing Listeners.
    Yoon YS; Jaisinghani P; Goldsworthy R
    Am J Audiol; 2023 Mar; 32(1):170-181. PubMed ID: 36580493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding excessive SNR loss in hearing-impaired listeners.
    Grant KW; Walden TC
    J Am Acad Audiol; 2013 Apr; 24(4):258-73; quiz 337-8. PubMed ID: 23636208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.