These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 28906515)

  • 1. Study of the presence of spherical deformations on the Al top electrode due to electroforming in rewritable organic resistive memories.
    Ávila-Niño JA; Reyes-Reyes M; López-Sandoval R
    Phys Chem Chem Phys; 2017 Sep; 19(37):25691-25696. PubMed ID: 28906515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films.
    Lin KW; Wang TY; Chang YC
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate).
    Wang Z; Zeng F; Yang J; Chen C; Pan F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):447-53. PubMed ID: 22201222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical insight into electroforming of resistive switching manganite heterostructures.
    Borgatti F; Park C; Herpers A; Offi F; Egoavil R; Yamashita Y; Yang A; Kobata M; Kobayashi K; Verbeeck J; Panaccione G; Dittmann R
    Nanoscale; 2013 May; 5(9):3954-60. PubMed ID: 23535767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive Switching Memory of TiO
    Xiao M; Musselman KP; Duley WW; Zhou NY
    Nanomicro Lett; 2017; 9(2):15. PubMed ID: 30460312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the top electrode material for achieving an equivalent oxide thickness smaller than 0.4 nm from an Al-doped TiO₂ film.
    Jeon W; Yoo S; Kim HK; Lee W; An CH; Chung MJ; Cho CJ; Kim SK; Hwang CS
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21632-7. PubMed ID: 25402821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable and Low-Power Multilevel Resistive Switching in TiO
    Xiao M; Musselman KP; Duley WW; Zhou YN
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4808-4817. PubMed ID: 28098978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical Characteristics of TiO(2-x)/TiO2 Resistive Switching Memory Fabricated by Atomic Layer Deposition.
    Heo KJ; Kim WY; Kim SJ
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6304-7. PubMed ID: 27427707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistive switching behavior and multiple transmittance states in solution-processed tungsten oxide.
    Wu WT; Wu JJ; Chen JS
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2616-21. PubMed ID: 21702504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-free, single-polymer device exhibits resistive memory effect.
    Bhansali US; Khan MA; Cha D; AlMadhoun MN; Li R; Chen L; Amassian A; Odeh IN; Alshareef HN
    ACS Nano; 2013 Dec; 7(12):10518-24. PubMed ID: 24206048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point contact resistive switching memory based on self-formed interface of Al/ITO.
    Li Q; Qiu L; Wei X; Dai B; Zeng H
    Sci Rep; 2016 Jul; 6():29347. PubMed ID: 27383005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Area-Type Electronic Bipolar Switching Al/TiO
    Yan Y; Li JC; Chen YT; Wang XY; Cai GR; Park HW; Kim JH; Zhao JS; Hwang CS
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39561-39572. PubMed ID: 34378371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonvolatile memory devices prepared from sol-gel derived niobium pentoxide films.
    Baek H; Lee C; Choi J; Cho J
    Langmuir; 2013 Jan; 29(1):380-6. PubMed ID: 23210494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt/WO3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing.
    Shi T; Yin XB; Yang R; Guo X
    Phys Chem Chem Phys; 2016 Apr; 18(14):9338-43. PubMed ID: 26996120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memristive behaviour of Si-Al oxynitride thin films: the role of oxygen and nitrogen vacancies in the electroforming process.
    Blázquez O; Martín G; Camps I; Mariscal A; López-Vidrier J; Ramírez JM; Hernández S; Estradé S; Peiró F; Serna R; Garrido B
    Nanotechnology; 2018 Jun; 29(23):235702. PubMed ID: 29547131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect-Engineered Electroforming-Free Analog HfO
    Kim GS; Song H; Lee YK; Kim JH; Kim W; Park TH; Kim HJ; Min Kim K; Hwang CS
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47063-47072. PubMed ID: 31741373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrical characterisation methodology for identifying the switching mechanism in TiO
    Michalas L; Stathopoulos S; Khiat A; Prodromakis T
    Sci Rep; 2019 Jun; 9(1):8168. PubMed ID: 31160619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing Oxygen Vacancy Driven Electroforming in Pt-TiO2-Pt Device via Strong Metal Support Interaction.
    Jang MH; Agarwal R; Nukala P; Choi D; Johnson AT; Chen IW; Agarwal R
    Nano Lett; 2016 Apr; 16(4):2139-44. PubMed ID: 26982325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes.
    You T; Ou X; Niu G; Bärwolf F; Li G; Du N; Bürger D; Skorupa I; Jia Q; Yu W; Wang X; Schmidt OG; Schmidt H
    Sci Rep; 2015 Dec; 5():18623. PubMed ID: 26692104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures.
    Jiang H; Li XY; Chen R; Shao XL; Yoon JH; Hu X; Hwang CS; Zhao J
    Sci Rep; 2016 Feb; 6():22216. PubMed ID: 26916050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.