BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28906525)

  • 1. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.
    Valentin TM; Leggett SE; Chen PY; Sodhi JK; Stephens LH; McClintock HD; Sim JY; Wong IY
    Lab Chip; 2017 Oct; 17(20):3474-3488. PubMed ID: 28906525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
    Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X
    Adv Mater; 2015 Jul; 27(27):4035-40. PubMed ID: 26033288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour
    Souza A; Kevin M; Rodriguez BJ; Reynaud EG
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies.
    Joddar B; Garcia E; Casas A; Stewart CM
    Sci Rep; 2016 Aug; 6():32456. PubMed ID: 27578567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and failure analysis of visible light crosslinked alginate-based tissue sealants.
    Charron PN; Fenn SL; Poniz A; Oldinski RA
    J Mech Behav Biomed Mater; 2016 Jun; 59():314-321. PubMed ID: 26897093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.
    Zhang Y; Liu J; Huang L; Wang Z; Wang L
    Sci Rep; 2015 Jul; 5():12374. PubMed ID: 26205586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Laden Multiple-Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis.
    Ding A; Jeon O; Tang R; Lee YB; Lee SJ; Alsberg E
    Adv Sci (Weinh); 2021 May; 8(9):2004616. PubMed ID: 33977070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered alginate hydrogels for effective microfluidic capture and release of endothelial progenitor cells from whole blood.
    Hatch A; Hansmann G; Murthy SK
    Langmuir; 2011 Apr; 27(7):4257-64. PubMed ID: 21401041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Click cross-linking improves retention and targeting of refillable alginate depots.
    Moody CT; Palvai S; Brudno Y
    Acta Biomater; 2020 Aug; 112():112-121. PubMed ID: 32497743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triggerable tough hydrogels for gastric resident dosage forms.
    Liu J; Pang Y; Zhang S; Cleveland C; Yin X; Booth L; Lin J; Lucy Lee YA; Mazdiyasni H; Saxton S; Kirtane AR; Erlach TV; Rogner J; Langer R; Traverso G
    Nat Commun; 2017 Jul; 8(1):124. PubMed ID: 28743858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired green light crosslinked alginate-heparin hydrogels support HUVEC tube formation.
    Charron PN; Garcia LM; Tahir I; Floreani RA
    J Mech Behav Biomed Mater; 2022 Jan; 125():104932. PubMed ID: 34736027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal sterilization of alginate hydrogels: efficacy and impact on mechanical properties.
    Stoppel WL; White JC; Horava SD; Henry AC; Roberts SC; Bhatia SR
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):877-84. PubMed ID: 24259507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits.
    Zhang Y; Yu Y; Dolati F; Ozbolat IT
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():126-33. PubMed ID: 24863208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties.
    Rosiak P; Latanska I; Paul P; Sujka W; Kolesinska B
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Living Structures with Shape-Morphing Capability Enabled by 4D Printing with Functional Bacteria.
    Liu S; Yang M; Smarr C; Zhang G; Barton H; Xu W
    ACS Appl Bio Mater; 2024 May; 7(5):3247-3257. PubMed ID: 38648508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate.
    Mukherjee S; Kim B; Cheng LY; Doerfert MD; Li J; Hernandez A; Liang L; Jarvis MI; Rios PD; Ghani S; Joshi I; Isa D; Ray T; Terlier T; Fell C; Song P; Miranda RN; Oberholzer J; Zhang DY; Veiseh O
    Nat Biomed Eng; 2023 Jul; 7(7):867-886. PubMed ID: 37106151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Isolation from 3D Hydrogel Scaffolds.
    Da Silva André G; Paganella LG; Badolato A; Sander S; Giampietro C; Tibbitt MW; Dengjel J; Labouesse C
    Curr Protoc; 2024 Jan; 4(1):e966. PubMed ID: 38206582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow and hydrodynamic shear stress inside a printing needle during biofabrication.
    Müller SJ; Mirzahossein E; Iftekhar EN; Bächer C; Schrüfer S; Schubert DW; Fabry B; Gekle S
    PLoS One; 2020; 15(7):e0236371. PubMed ID: 32706802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anionic species from multivalent metal salts are differentially retained during aqueous ionic gelation of sodium alginate and could fine-tune the hydrogel properties.
    Dash S; Gutti P; Behera B; Mishra D
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130767. PubMed ID: 38471601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired reconfiguration of 3D printed microfluidic hydrogels via automated manipulation of magnetic inks.
    Mansoorifar A; Tahayeri A; Bertassoni LE
    Lab Chip; 2020 May; 20(10):1713-1719. PubMed ID: 32363355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.