BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28910068)

  • 1. Iodine-Mediated Etching of Triangular Gold Nanoplates for Colorimetric Sensing of Copper Ion and Aptasensing of Chloramphenicol.
    Chang CC; Wang G; Takarada T; Maeda M
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34518-34525. PubMed ID: 28910068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential colorimetric sensing of cupric and mercuric ions by regulating the etching process of triangular gold nanoplates.
    Wang Q; Peng R; Wang Y; Zhu S; Yan X; Lei Y; Sun Y; He H; Luo L
    Mikrochim Acta; 2020 Mar; 187(4):205. PubMed ID: 32152683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold Triangular Nanoplates Based Single-Particle Dark-Field Microscopy Assay of Pyrophosphate.
    Gu XY; Liu JJ; Gao PF; Li YF; Huang CZ
    Anal Chem; 2019 Dec; 91(24):15798-15803. PubMed ID: 31747259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iodide-assisted silver nanoplates for colorimetric determination of chromium(III) and copper(II) via an aggregation/fusion/oxidation etching strategy.
    Wang Z; Lu Y; Pang J; Sun J; Yang F; Li H; Liu Y
    Mikrochim Acta; 2019 Dec; 187(1):19. PubMed ID: 31807940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric sensing of Cu(II) ions in water on the basis of selective chemical etching of EDA-capped Ag nanoplates.
    Kim J; Shim H; Kim YS; Kim MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122750. PubMed ID: 37104909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric and visual sensing of ferrous ion by Fenton reaction-stimulated etching of triangular gold nanoplates.
    He H; Huang J; Wang Q; Si X; Yan X; Lei Y; Li H; Luo L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122837. PubMed ID: 37209473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric detection of Hg(II) by measurement the color alterations from the "before" and "after" RGB images of etched triangular silver nanoplates.
    Li L; Zhang L; Zhao Y; Chen Z
    Mikrochim Acta; 2018 Mar; 185(4):235. PubMed ID: 29594673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and sensitive determination of ascorbic acid based on label-free silver triangular nanoplates.
    Qiao W; Liu Y; Fan X; Yang Y; Liu W; Wang L; Hu Z; Liu F; Jin C; Sun X; Liu D; Liu Q; Li L
    Curr Res Food Sci; 2023; 7():100548. PubMed ID: 37534308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual detection of different metal ions based on the tug of war between triangular Au nanoparticles and metal ions against mercaptans.
    Chen X; Liang Y
    Anal Methods; 2021 Jan; 13(2):227-231. PubMed ID: 33346752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen.
    Liu JM; Jiao L; Lin LP; Cui ML; Wang XX; Zhang LH; Zheng ZY; Jiang SL
    Talanta; 2013 Dec; 117():425-30. PubMed ID: 24209363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles.
    Liu R; Chen Z; Wang S; Qu C; Chen L; Wang Z
    Talanta; 2013 Aug; 112():37-42. PubMed ID: 23708534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual assay for determination of copper ions based on anti-etching of gold nanorods induced by cuprous ions.
    Xu S; Chen X; Chen X; Liang Y
    Mikrochim Acta; 2020 Feb; 187(3):157. PubMed ID: 32034517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates.
    Yang XH; Ling J; Peng J; Cao QE; Ding ZT; Bian LC
    Anal Chim Acta; 2013 Oct; 798():74-81. PubMed ID: 24070486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reshaping of triangular silver nanoplates by a non-halide etchant and its application in melamine sensing.
    Ardianrama AD; Wijaya YN; Hur SH; Woo HC; Kim MH
    J Colloid Interface Sci; 2019 Sep; 552():485-493. PubMed ID: 31152964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of ferrous ion via morphology transition of gold nanorods.
    Lu S; Zhang X; Chen L; Yang P
    Mikrochim Acta; 2017 Dec; 185(1):76. PubMed ID: 29594623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods.
    Zhang Z; Chen Z; Cheng F; Zhang Y; Chen L
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):932-936. PubMed ID: 27816591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer.
    Hou X; Chen S; Tang J; Xiong Y; Long Y
    Anal Chim Acta; 2014 May; 825():57-62. PubMed ID: 24767151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator.
    Wang S; Chen Z; Chen L; Liu R; Chen L
    Analyst; 2013 Apr; 138(7):2080-4. PubMed ID: 23420019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fenton-like reaction-mediated etching of gold nanorods for visual detection of Co(2+).
    Zhang Z; Chen Z; Pan D; Chen L
    Langmuir; 2015 Jan; 31(1):643-50. PubMed ID: 25486441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles.
    Hormozi-Nezhad MR; Abbasi-Moayed S
    Talanta; 2014 Nov; 129():227-32. PubMed ID: 25127588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.