These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28910203)
1. The T-Box Transcription Factor TBX2 Regulates Cell Proliferation in the Retinal Pigment Epithelium. Wang J; Liu Y; Su Z; Pan L; Lu F; Qu J; Hou L Curr Eye Res; 2017 Nov; 42(11):1537-1544. PubMed ID: 28910203 [TBL] [Abstract][Full Text] [Related]
2. Microphthalmia-associated transcription factor/T-box factor-2 axis acts through Cyclin D1 to regulate melanocyte proliferation. Pan L; Ma X; Wen B; Su Z; Zheng X; Liu Y; Li H; Chen Y; Wang J; Lu F; Qu J; Hou L Cell Prolif; 2015 Dec; 48(6):631-42. PubMed ID: 26486273 [TBL] [Abstract][Full Text] [Related]
3. MITF acts as an anti-oxidant transcription factor to regulate mitochondrial biogenesis and redox signaling in retinal pigment epithelial cells. Hua J; Chen H; Chen Y; Zheng G; Li F; Qu J; Ma X; Hou L Exp Eye Res; 2018 May; 170():138-147. PubMed ID: 29486165 [TBL] [Abstract][Full Text] [Related]
4. Decorin inhibits angiogenic potential of choroid-retinal endothelial cells by downregulating hypoxia-induced Met, Rac1, HIF-1α and VEGF expression in cocultured retinal pigment epithelial cells. Du S; Wang S; Wu Q; Hu J; Li T Exp Eye Res; 2013 Nov; 116():151-60. PubMed ID: 24016866 [TBL] [Abstract][Full Text] [Related]
5. LncRNA NEAT1 Recruits SFPQ to Regulate MITF Splicing and Control RPE Cell Proliferation. Hu X; Li F; He J; Yang J; Jiang Y; Jiang M; Wei D; Chang L; Hejtmancik JF; Hou L; Ma X Invest Ophthalmol Vis Sci; 2021 Nov; 62(14):18. PubMed ID: 34787639 [TBL] [Abstract][Full Text] [Related]
6. Regulation of cell proliferation in the retinal pigment epithelium: Differential regulation of the death-associated protein like-1 DAPL1 by alternative MITF splice forms. Ma X; Hua J; Zheng G; Li F; Rao C; Li H; Wang J; Pan L; Hou L Pigment Cell Melanoma Res; 2018 May; 31(3):411-422. PubMed ID: 29171181 [TBL] [Abstract][Full Text] [Related]
7. Canonical/β-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. Leach LL; Buchholz DE; Nadar VP; Lowenstein SE; Clegg DO Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1002-13. PubMed ID: 25604686 [TBL] [Abstract][Full Text] [Related]
8. DAPL1, a susceptibility locus for age-related macular degeneration, acts as a novel suppressor of cell proliferation in the retinal pigment epithelium. Ma X; Li H; Wang Y; Wang J; Zheng Q; Hua J; Yang J; Pan L; Lu F; Qu J; Hou L Hum Mol Genet; 2017 May; 26(9):1612-1621. PubMed ID: 28334846 [TBL] [Abstract][Full Text] [Related]
9. The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2. Chen Y; Pan L; Su Z; Wang J; Li H; Ma X; Liu Y; Lu F; Qu J; Hou L Mol Cell Biochem; 2016 Apr; 415(1-2):103-9. PubMed ID: 26971330 [TBL] [Abstract][Full Text] [Related]
10. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide. Carr AJ; Vugler AA; Yu L; Semo M; Coffey P; Moss SE; Greenwood J Mol Vis; 2011; 17():1701-15. PubMed ID: 21738400 [TBL] [Abstract][Full Text] [Related]
11. Sox10 regulates skin melanocyte proliferation by activating the DNA replication licensing factor MCM5. Su Z; Zheng X; Zhang X; Wang Y; Zhu S; Lu F; Qu J; Hou L J Dermatol Sci; 2017 Mar; 85(3):216-225. PubMed ID: 27955842 [TBL] [Abstract][Full Text] [Related]
12. Zeb1 represses Mitf and regulates pigment synthesis, cell proliferation, and epithelial morphology. Liu Y; Ye F; Li Q; Tamiya S; Darling DS; Kaplan HJ; Dean DC Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5080-8. PubMed ID: 19515996 [TBL] [Abstract][Full Text] [Related]
13. Taz-tead1 links cell-cell contact to zeb1 expression, proliferation, and dedifferentiation in retinal pigment epithelial cells. Liu Y; Xin Y; Ye F; Wang W; Lu Q; Kaplan HJ; Dean DC Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3372-8. PubMed ID: 20207963 [TBL] [Abstract][Full Text] [Related]
14. Effects of semaphorin 3A on retinal pigment epithelial cell activity. Bai Y; Yu W; Han N; Yang F; Sun Y; Zhang L; Zhao M; Huang L; Zhou A; Wang F; Li X Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6628-38. PubMed ID: 24045994 [TBL] [Abstract][Full Text] [Related]
15. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Samuel W; Jaworski C; Postnikova OA; Kutty RK; Duncan T; Tan LX; Poliakov E; Lakkaraju A; Redmond TM Mol Vis; 2017; 23():60-89. PubMed ID: 28356702 [TBL] [Abstract][Full Text] [Related]
16. Expression of endoplasmic reticulum stress markers GRP78 and CHOP induced by oxidative stress in blue light-mediated damage of A2E-containing retinal pigment epithelium cells. Feng J; Chen X; Sun X; Wang F; Sun X Ophthalmic Res; 2014; 52(4):224-33. PubMed ID: 25402962 [TBL] [Abstract][Full Text] [Related]
18. Wnt/β-Catenin Signaling Mediates Regeneration of Retinal Pigment Epithelium After Laser Photocoagulation in Mouse Eye. Han JW; Lyu J; Park YJ; Jang SY; Park TK Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8314-24. PubMed ID: 26720485 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effect of microRNA-34a on retinal pigment epithelial cell proliferation and migration. Hou Q; Tang J; Wang Z; Wang C; Chen X; Hou L; Dong XD; Tu L Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6481-8. PubMed ID: 23970470 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of T-cell activation by retinal pigment epithelial cells derived from induced pluripotent stem cells. Sugita S; Kamao H; Iwasaki Y; Okamoto S; Hashiguchi T; Iseki K; Hayashi N; Mandai M; Takahashi M Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1051-62. PubMed ID: 25604685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]