These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28910288)
1. Genomics-enabled analysis of the emergent disease cotton bacterial blight. Phillips AZ; Berry JC; Wilson MC; Vijayaraghavan A; Burke J; Bunn JI; Allen TW; Wheeler T; Bart RS PLoS Genet; 2017 Sep; 13(9):e1007003. PubMed ID: 28910288 [TBL] [Abstract][Full Text] [Related]
2. Identification of a virulence tal gene in the cotton pathogen, Xanthomonas citri pv. malvacearum strain Xss-V Haq F; Xie S; Huang K; Shah SMA; Ma W; Cai L; Xu X; Xu Z; Wang S; Zou L; Zhu B; Chen G BMC Microbiol; 2020 Apr; 20(1):91. PubMed ID: 32293266 [TBL] [Abstract][Full Text] [Related]
3. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Cox KL; Meng F; Wilkins KE; Li F; Wang P; Booher NJ; Carpenter SCD; Chen LQ; Zheng H; Gao X; Zheng Y; Fei Z; Yu JZ; Isakeit T; Wheeler T; Frommer WB; He P; Bogdanove AJ; Shan L Nat Commun; 2017 May; 8():15588. PubMed ID: 28537271 [TBL] [Abstract][Full Text] [Related]
4. Evaluation and genome-wide association study of resistance to bacterial blight race 18 in U.S. Upland cotton germplasm. Elassbli H; Abdelraheem A; Zhu Y; Teng Z; Wheeler TA; Kuraparthy V; Hinze L; Stelly DM; Wedegaertner T; Zhang J Mol Genet Genomics; 2021 May; 296(3):719-729. PubMed ID: 33779828 [TBL] [Abstract][Full Text] [Related]
5. Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). Gowda SA; Shrestha N; Harris TM; Phillips AZ; Fang H; Sood S; Zhang K; Bourland F; Bart R; Kuraparthy V Theor Appl Genet; 2022 Dec; 135(12):4421-4436. PubMed ID: 36208320 [TBL] [Abstract][Full Text] [Related]
6. Development of a qPCR Protocol to Detect the Cotton Bacterial Blight Pathogen, Xanthomonas citri pv. malvacearum, from Cotton Leaves and Seeds. Wang XQ; Allen TW; Wang H; Peterson DG; Nichols RL; Liu A; Li XD; Deng P; Jia D; Lu SE Plant Dis; 2019 Mar; 103(3):422-429. PubMed ID: 30632895 [TBL] [Abstract][Full Text] [Related]
9. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Wright RJ; Thaxton PM; El-Zik KM; Paterson AH Genetics; 1998 Aug; 149(4):1987-96. PubMed ID: 9691052 [TBL] [Abstract][Full Text] [Related]
10. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight. Essenberg M; Bayles MB; Pierce ML; Verhalen LM Phytopathology; 2014 Oct; 104(10):1088-97. PubMed ID: 24655289 [TBL] [Abstract][Full Text] [Related]
11. Management of Xanthomonas camprestris pv. malvacearum-induced blight of cotton through phenolics of cotton rhizobacterium. Mondal KK; Dureja P; Verma JP Curr Microbiol; 2001 Nov; 43(5):336-9. PubMed ID: 11688797 [TBL] [Abstract][Full Text] [Related]
12. Comparative Genomics Identifies Conserved and Variable TAL Effectors in African Strains of the Cotton Pathogen Pérez-Quintero AL; Rodriguez-R LM; Cuesta-Morrondo S; Hakalová E; Betancurt-Anzola D; Valera LCC; Cardenas LAC; Matiz-Céron L; Jacobs JM; Roman-Reyna V; Muñoz AR; Giraldo AJB; Koebnik R Phytopathology; 2023 Aug; 113(8):1387-1393. PubMed ID: 37081724 [TBL] [Abstract][Full Text] [Related]
13. Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. Peng Z; Hu Y; Xie J; Potnis N; Akhunova A; Jones J; Liu Z; White FF; Liu S BMC Genomics; 2016 Jan; 17():21. PubMed ID: 26729225 [TBL] [Abstract][Full Text] [Related]
14. The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum. Marmey P; Jalloul A; Alhamdia M; Assigbetse K; Cacas JL; Voloudakis AE; Champion A; Clerivet A; Montillet JL; Nicole M Plant Physiol Biochem; 2007 Aug; 45(8):596-606. PubMed ID: 17611116 [TBL] [Abstract][Full Text] [Related]
15. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. Ruh M; Briand M; Bonneau S; Jacques MA; Chen NWG BMC Genomics; 2017 Aug; 18(1):670. PubMed ID: 28854875 [TBL] [Abstract][Full Text] [Related]
16. Interaction of common bacterial blight bacteria with disease resistance quantitative trait loci in common bean. Duncan RW; Singh SP; Gilbertson RL Phytopathology; 2011 Apr; 101(4):425-35. PubMed ID: 21391823 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species. Xiang L; Liu J; Wu C; Deng Y; Cai C; Zhang X; Cai Y BMC Genomics; 2017 Apr; 18(1):292. PubMed ID: 28403834 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity of transcriptional activator-like effector genes in Chinese isolates of Xanthomonas oryzae pv. oryzicola. Ji ZY; Zakria M; Zou LF; Xiong L; Li Z; Ji GH; Chen GY Phytopathology; 2014 Jul; 104(7):672-82. PubMed ID: 24423401 [TBL] [Abstract][Full Text] [Related]
19. The genome of the cotton bacterial blight pathogen Showmaker KC; Arick MA; Hsu CY; Martin BE; Wang X; Jia J; Wubben MJ; Nichols RL; Allen TW; Peterson DG; Lu SE Stand Genomic Sci; 2017; 12():42. PubMed ID: 28770027 [No Abstract] [Full Text] [Related]
20. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Li T; Huang S; Zhou J; Yang B Mol Plant; 2013 May; 6(3):781-9. PubMed ID: 23430045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]