These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28910499)

  • 61. Regression models for mixed discrete and continuous responses with potentially missing values.
    Fitzmaurice GM; Laird NM
    Biometrics; 1997 Mar; 53(1):110-22. PubMed ID: 9147588
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generalized additive selection models for the analysis of studies with potentially nonignorable missing outcome data.
    Scharfstein DO; Irizarry RA
    Biometrics; 2003 Sep; 59(3):601-13. PubMed ID: 14601761
    [TBL] [Abstract][Full Text] [Related]  

  • 63. On the accuracy of efficiency of estimating equation approach.
    Sutradhar BC; Das K
    Biometrics; 2000 Jun; 56(2):622-5. PubMed ID: 10877326
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural inference in transition measurement error models for longitudinal data.
    Pan W; Lin X; Zeng D
    Biometrics; 2006 Jun; 62(2):402-12. PubMed ID: 16918904
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An approximate generalized linear model with random effects for informative missing data.
    Follmann D; Wu M
    Biometrics; 1995 Mar; 51(1):151-68. PubMed ID: 7766771
    [TBL] [Abstract][Full Text] [Related]  

  • 66. On estimating the relationship between longitudinal measurements and time-to-event data using a simple two-stage procedure.
    Albert PS; Shih JH
    Biometrics; 2010 Sep; 66(3):983-7; discussion 987-91. PubMed ID: 20849547
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A note on fitting a marginal model to mixed effects log-linear regression data via GEE.
    Grömping U
    Biometrics; 1996 Mar; 52(1):280-5. PubMed ID: 8934596
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.
    Leung DH; Wang YG; Zhu M
    Biostatistics; 2009 Jul; 10(3):436-45. PubMed ID: 19346528
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse.
    Vansteelandt S; Rotnitzky A; Robins J
    Biometrika; 2007 Dec; 94(4):841-860. PubMed ID: 27453583
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Model selection based on resampling approaches for cluster longitudinal data with missingness in outcomes.
    Chen CS; Shen CW
    Stat Med; 2018 Sep; 37(20):2982-2997. PubMed ID: 29736918
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout.
    Lee M; Lee K; Lee J
    Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The impact of dichotomization in longitudinal data analysis: a simulation study.
    Yoo B
    Pharm Stat; 2010; 9(4):298-312. PubMed ID: 19904810
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identifiability and estimation of causal mediation effects with missing data.
    Li W; Zhou XH
    Stat Med; 2017 Nov; 36(25):3948-3965. PubMed ID: 28783880
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Joint analysis of multiple longitudinal outcomes: application of a latent class model.
    Putter H; Vos T; de Haes H; van Houwelingen H
    Stat Med; 2008 Dec; 27(29):6228-49. PubMed ID: 18816496
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Estimation methods for marginal and association parameters for longitudinal binary data with nonignorable missing observations.
    Li H; Yi GY
    Stat Med; 2013 Feb; 32(5):833-48. PubMed ID: 22833460
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Using modified approaches on marginal regression analysis of longitudinal data with time-dependent covariates.
    Zhou Y; Lefante J; Rice J; Chen S
    Stat Med; 2014 Aug; 33(19):3354-64. PubMed ID: 24723212
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of incomplete multivariate data using linear models with structured covariance matrices.
    Schluchter MD
    Stat Med; 1988; 7(1-2):317-24. PubMed ID: 3353610
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A latent process regression model for spatially correlated count data.
    McShane LM; Albert PS; Palmatier MA
    Biometrics; 1997 Jun; 53(2):698-706. PubMed ID: 9192458
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach.
    Qu Y; Lipkovich I
    Stat Med; 2009 Apr; 28(9):1402-14. PubMed ID: 19222021
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A latent-variable marginal method for multi-level incomplete binary data.
    Chen B; Zhou XH
    Stat Med; 2012 Nov; 31(26):3211-22. PubMed ID: 22733392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.