These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28911038)

  • 1. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.
    Cygan KJ; Sanford CH; Fairbrother WG
    Bioinformatics; 2017 Sep; 33(18):2943-2945. PubMed ID: 28911038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spliceman--a computational web server that predicts sequence variations in pre-mRNA splicing.
    Lim KH; Fairbrother WG
    Bioinformatics; 2012 Apr; 28(7):1031-2. PubMed ID: 22328782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes.
    Lim KH; Ferraris L; Filloux ME; Raphael BJ; Fairbrother WG
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11093-8. PubMed ID: 21685335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing.
    Wang X; Wang K; Radovich M; Wang Y; Wang G; Feng W; Sanford JR; Liu Y
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S4. PubMed ID: 19594881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative prediction of variant effects on alternative splicing in
    Kumar J; Lackey L; Waldern JM; Dey A; Mustoe AM; Weeks KM; Mathews DH; Laederach A
    Elife; 2022 Jun; 11():. PubMed ID: 35695373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpliceAPP: an interactive web server to predict splicing errors arising from human mutations.
    Huang AC; Su JY; Hung YJ; Chiang HL; Chen YT; Huang YT; Yu CA; Lin HN; Lin CL
    BMC Genomics; 2024 Jun; 25(1):600. PubMed ID: 38877417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses.
    Holla ØL; Nakken S; Mattingsdal M; Ranheim T; Berge KE; Defesche JC; Leren TP
    Mol Genet Metab; 2009 Apr; 96(4):245-52. PubMed ID: 19208450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated splicing mutation analysis by information theory.
    Nalla VK; Rogan PK
    Hum Mutat; 2005 Apr; 25(4):334-42. PubMed ID: 15776446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESEfinder: A web resource to identify exonic splicing enhancers.
    Cartegni L; Wang J; Zhu Z; Zhang MQ; Krainer AR
    Nucleic Acids Res; 2003 Jul; 31(13):3568-71. PubMed ID: 12824367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IntSplice: prediction of the splicing consequences of intronic single-nucleotide variations in the human genome.
    Shibata A; Okuno T; Rahman MA; Azuma Y; Takeda J; Masuda A; Selcen D; Engel AG; Ohno K
    J Hum Genet; 2016 Jul; 61(7):633-40. PubMed ID: 27009626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease.
    Gonzalez-Paredes FJ; Ramos-Trujillo E; Claverie-Martin F
    Gene; 2014 Aug; 546(2):243-9. PubMed ID: 24907393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpliceAid 2: a database of human splicing factors expression data and RNA target motifs.
    Piva F; Giulietti M; Burini AB; Principato G
    Hum Mutat; 2012 Jan; 33(1):81-5. PubMed ID: 21922594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE.
    Majoros WH; Campbell MS; Holt C; DeNardo EK; Ware D; Allen AS; Yandell M; Reddy TE
    Bioinformatics; 2017 May; 33(10):1437-1446. PubMed ID: 28011790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The new protein topology graph library web server.
    Schäfer T; Scheck A; Bruneß D; May P; Koch I
    Bioinformatics; 2016 Feb; 32(3):474-6. PubMed ID: 26446136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vex-seq: high-throughput identification of the impact of genetic variation on pre-mRNA splicing efficiency.
    Adamson SI; Zhan L; Graveley BR
    Genome Biol; 2018 Jun; 19(1):71. PubMed ID: 29859120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Splicing from Primary Sequence with Deep Learning.
    Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK
    Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic characterization of short intronic splicing-regulatory elements in SMN2 pre-mRNA.
    Gao Y; Lin KT; Jiang T; Yang Y; Rahman MA; Gong S; Bai J; Wang L; Sun J; Sheng L; Krainer AR; Hua Y
    Nucleic Acids Res; 2022 Jan; 50(2):731-749. PubMed ID: 35018432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing.
    Mort M; Sterne-Weiler T; Li B; Ball EV; Cooper DN; Radivojac P; Sanford JR; Mooney SD
    Genome Biol; 2014 Jan; 15(1):R19. PubMed ID: 24451234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNPlice: variants that modulate Intron retention from RNA-sequencing data.
    Mudvari P; Movassagh M; Kowsari K; Seyfi A; Kokkinaki M; Edwards NJ; Golestaneh N; Horvath A
    Bioinformatics; 2015 Apr; 31(8):1191-8. PubMed ID: 25481010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future directions for high-throughput splicing assays in precision medicine.
    Rhine CL; Neil C; Glidden DT; Cygan KJ; Fredericks AM; Wang J; Walton NA; Fairbrother WG
    Hum Mutat; 2019 Sep; 40(9):1225-1234. PubMed ID: 31297895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.