BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28911120)

  • 21. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3.
    Ni W; Xu SL; González-Grandío E; Chalkley RJ; Huhmer AFR; Burlingame AL; Wang ZY; Quail PH
    Nat Commun; 2017 May; 8():15236. PubMed ID: 28492231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis.
    Ni W; Xu SL; Tepperman JM; Stanley DJ; Maltby DA; Gross JD; Burlingame AL; Wang ZY; Quail PH
    Science; 2014 Jun; 344(6188):1160-1164. PubMed ID: 24904166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
    Noda N; Ozawa T
    Photochem Photobiol; 2018 Sep; 94(5):1071-1076. PubMed ID: 29893404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A red light-controlled synthetic gene expression switch for plant systems.
    Müller K; Siegel D; Rodriguez Jahnke F; Gerrer K; Wend S; Decker EL; Reski R; Weber W; Zurbriggen MD
    Mol Biosyst; 2014 Jul; 10(7):1679-88. PubMed ID: 24469598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.
    Zhu Y; Tepperman JM; Fairchild CD; Quail PH
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13419-24. PubMed ID: 11069292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions.
    Golonka D; Gerken U; Köhler J; Möglich A
    J Mol Biol; 2020 Jul; 432(16):4327-4340. PubMed ID: 32534065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana.
    Wang FF; Lian HL; Kang CY; Yang HQ
    Mol Plant; 2010 Jan; 3(1):246-59. PubMed ID: 19965572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.
    Oh E; Kim J; Park E; Kim JI; Kang C; Choi G
    Plant Cell; 2004 Nov; 16(11):3045-58. PubMed ID: 15486102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation.
    Al-Sady B; Ni W; Kircher S; Schäfer E; Quail PH
    Mol Cell; 2006 Aug; 23(3):439-46. PubMed ID: 16885032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1965-73. PubMed ID: 23037004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction.
    Shikata H; Shibata M; Ushijima T; Nakashima M; Kong SG; Matsuoka K; Lin C; Matsushita T
    Plant J; 2012 Jun; 70(5):727-38. PubMed ID: 22324426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking photoreceptor excitation to changes in plant architecture.
    Li L; Ljung K; Breton G; Schmitz RJ; Pruneda-Paz J; Cowing-Zitron C; Cole BJ; Ivans LJ; Pedmale UV; Jung HS; Ecker JR; Kay SA; Chory J
    Genes Dev; 2012 Apr; 26(8):785-90. PubMed ID: 22508725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quantitative model of the phytochrome-PIF light signalling initiating chloroplast development.
    Dubreuil C; Ji Y; Strand Å; Grönlund A
    Sci Rep; 2017 Oct; 7(1):13884. PubMed ID: 29066729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed dimerization: an in vivo expression system for functional studies of type II phytochromes.
    Liu P; Sharrock RA
    Plant J; 2013 Sep; 75(6):915-26. PubMed ID: 23738620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytochrome-interacting ankyrin repeat protein 2 modulates phytochrome A-mediated PIF3 phosphorylation in light signal transduction.
    Yoo J; Cho MH; Lee SW; Bhoo SH
    J Biochem; 2016 Oct; 160(4):243-249. PubMed ID: 27143545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana.
    Fujimori T; Yamashino T; Kato T; Mizuno T
    Plant Cell Physiol; 2004 Aug; 45(8):1078-86. PubMed ID: 15356333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana.
    Su L; Hou P; Song M; Zheng X; Guo L; Xiao Y; Yan L; Li W; Yang J
    Int J Mol Sci; 2015 May; 16(6):12199-212. PubMed ID: 26030677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.