BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28911171)

  • 1. Sirtuin-3 Promotes Adipogenesis, Osteoclastogenesis, and Bone Loss in Aging Male Mice.
    Ho L; Wang L; Roth TM; Pan Y; Verdin EM; Hsiao EC; Nissenson RA
    Endocrinology; 2017 Sep; 158(9):2741-2753. PubMed ID: 28911171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1β axis in mice.
    Huh JE; Shin JH; Jang ES; Park SJ; Park DR; Ko R; Seo DH; Kim HS; Lee SH; Choi Y; Kim HS; Lee SY
    Sci Rep; 2016 Mar; 6():22511. PubMed ID: 26928655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of SIRT3 inhibits osteoclastogenesis and alleviates aging or estrogen deficiency-induced bone loss in female mice.
    Li Q; Wang H; Zhang J; Kong AP; Li G; Lam TP; Cheng JC; Lee WY
    Bone; 2021 Mar; 144():115827. PubMed ID: 33359008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells.
    Gurt I; Artsi H; Cohen-Kfir E; Hamdani G; Ben-Shalom G; Feinstein B; El-Haj M; Dresner-Pollak R
    PLoS One; 2015; 10(7):e0134391. PubMed ID: 26226624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency.
    Ling W; Krager K; Richardson KK; Warren AD; Ponte F; Aykin-Burns N; Manolagas SC; Almeida M; Kim HN
    JCI Insight; 2021 May; 6(10):. PubMed ID: 33878033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced expression of interleukin-11 in bone marrow stromal cells of senescence-accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis.
    Kodama Y; Takeuchi Y; Suzawa M; Fukumoto S; Murayama H; Yamato H; Fujita T; Kurokawa T; Matsumoto T
    J Bone Miner Res; 1998 Sep; 13(9):1370-7. PubMed ID: 9738508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative regulatory mechanism for the maintenance of bone homeostasis via STAT5-mediated regulation of the differentiation of BMSCs into adipocytes.
    Seong S; Kim JH; Kim K; Kim I; Koh JT; Kim N
    Exp Mol Med; 2021 May; 53(5):848-863. PubMed ID: 33990690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis.
    Sui B; Hu C; Liao L; Chen Y; Zhang X; Fu X; Zheng C; Li M; Wu L; Zhao X; Jin Y
    Sci Rep; 2016 Jul; 6():30186. PubMed ID: 27443833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-α.
    Zhang K; Wang C; Chen Y; Ji X; Chen X; Tian L; Yu X
    Endocrine; 2015 Sep; 50(1):239-49. PubMed ID: 25700562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging.
    Li CJ; Xiao Y; Yang M; Su T; Sun X; Guo Q; Huang Y; Luo XH
    J Clin Invest; 2018 Dec; 128(12):5251-5266. PubMed ID: 30352426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of targeted PPARγ disruption on bone remodeling.
    Cao J; Ou G; Yang N; Ding K; Kream BE; Hamrick MW; Isales CM; Shi XM
    Mol Cell Endocrinol; 2015 Jul; 410():27-34. PubMed ID: 25666993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirt3 regulates adipogenesis and adipokine secretion via its enzymatic activity.
    Ma O; Le T; Talbott G; HoangThao Nguyen T; Ha D; Ho L
    Pharmacol Res Perspect; 2020 Dec; 8(6):e00670. PubMed ID: 33191653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis.
    Elabd C; Basillais A; Beaupied H; Breuil V; Wagner N; Scheideler M; Zaragosi LE; Massiéra F; Lemichez E; Trajanoski Z; Carle G; Euller-Ziegler L; Ailhaud G; Benhamou CL; Dani C; Amri EZ
    Stem Cells; 2008 Sep; 26(9):2399-407. PubMed ID: 18583541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.
    Li CJ; Cheng P; Liang MK; Chen YS; Lu Q; Wang JY; Xia ZY; Zhou HD; Cao X; Xie H; Liao EY; Luo XH
    J Clin Invest; 2015 Apr; 125(4):1509-22. PubMed ID: 25751060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics.
    Liu J; Bao X; Huang J; Chen R; Tan Y; Zhang Z; Xiao B; Kong F; Gu C; Du J; Wang H; Qi J; Tan J; Ma D; Shi C; Xu G
    Metabolism; 2024 Mar; 152():155767. PubMed ID: 38154611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOD2 and Sirt3 Control Osteoclastogenesis by Regulating Mitochondrial ROS.
    Kim H; Lee YD; Kim HJ; Lee ZH; Kim HH
    J Bone Miner Res; 2017 Feb; 32(2):397-406. PubMed ID: 27540894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPARγ forms a bridge between DNA methylation and histone acetylation at the C/EBPα gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells.
    Zhao QH; Wang SG; Liu SX; Li JP; Zhang YX; Sun ZY; Fan QM; Tian JW
    FEBS J; 2013 Nov; 280(22):5801-14. PubMed ID: 23981481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of SIRT3 in the Osteoporosis.
    Hu S; Wang S
    Front Endocrinol (Lausanne); 2022; 13():893678. PubMed ID: 35692409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.