These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28911233)

  • 41. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos.
    Kouranova E; Forbes K; Zhao G; Warren J; Bartels A; Wu Y; Cui X
    Hum Gene Ther; 2016 Jun; 27(6):464-75. PubMed ID: 27094534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9.
    Gratz SJ; Harrison MM; Wildonger J; O'Connor-Giles KM
    Methods Mol Biol; 2015; 1311():335-48. PubMed ID: 25981484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of CRISPR-mediated genome engineering in cancer research.
    Sayin VI; Papagiannakopoulos T
    Cancer Lett; 2017 Feb; 387():10-17. PubMed ID: 27000990
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity.
    Anderson EM; Haupt A; Schiel JA; Chou E; Machado HB; Strezoska Ž; Lenger S; McClelland S; Birmingham A; Vermeulen A; Smith Av
    J Biotechnol; 2015 Oct; 211():56-65. PubMed ID: 26189696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR system in filamentous fungi: Current achievements and future directions.
    Deng H; Gao R; Liao X; Cai Y
    Gene; 2017 Sep; 627():212-221. PubMed ID: 28625564
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Methods of Evaluating the Efficiency of CRISPR/Cas Genome Editing].
    Lomov NA; Viushkov VS; Petrenko AP; Syrkina MS; Rubtsov MA
    Mol Biol (Mosk); 2019; 53(6):982-997. PubMed ID: 31876277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Self-restricted CRISPR System to Reduce Off-target Effects.
    Chen Y; Liu X; Zhang Y; Wang H; Ying H; Liu M; Li D; Lui KO; Ding Q
    Mol Ther; 2016 Sep; 24(9):1508-10. PubMed ID: 27687135
    [No Abstract]   [Full Text] [Related]  

  • 50. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments.
    Kimberland ML; Hou W; Alfonso-Pecchio A; Wilson S; Rao Y; Zhang S; Lu Q
    J Biotechnol; 2018 Oct; 284():91-101. PubMed ID: 30142414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of Cellular Models to Study Efficiency and Safety of Gene Edition by Homologous Directed Recombination Using the CRISPR/Cas9 System.
    Sánchez-Hernández S; Aguilar-González A; Guijarro-Albaladejo B; Maldonado-Pérez N; Ramos-Hernández I; Cortijo-Gutiérrez M; Sánchez Martín RM; Benabdellah K; Martin F
    Cells; 2020 Jun; 9(6):. PubMed ID: 32570971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9.
    Nihongaki Y; Otabe T; Sato M
    Anal Chem; 2018 Jan; 90(1):429-439. PubMed ID: 29161010
    [No Abstract]   [Full Text] [Related]  

  • 53. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
    Kuscu C; Arslan S; Singh R; Thorpe J; Adli M
    Nat Biotechnol; 2014 Jul; 32(7):677-83. PubMed ID: 24837660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenotyping first-generation genome editing mutants: a new standard?
    Teboul L; Murray SA; Nolan PM
    Mamm Genome; 2017 Aug; 28(7-8):377-382. PubMed ID: 28756587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Target Specificity of Cas9 Nuclease via DNA Rearrangement Regulated by the REC2 Domain.
    Sung K; Park J; Kim Y; Lee NK; Kim SK
    J Am Chem Soc; 2018 Jun; 140(25):7778-7781. PubMed ID: 29874063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy.
    Niu J; Zhang B; Chen H
    Mol Biotechnol; 2014 Aug; 56(8):681-8. PubMed ID: 24870618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Key elements for designing and performing a CRISPR/Cas9-based genetic screen.
    Shang W; Wang F; Fan G; Wang H
    J Genet Genomics; 2017 Sep; 44(9):439-449. PubMed ID: 28967615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR diagnostics: Underappreciated uses in perinatology.
    Pan A; Kraschel KL
    Semin Perinatol; 2018 Dec; 42(8):525-530. PubMed ID: 30415764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments.
    Carneiro P; de Freitas MV; Matte U
    PLoS One; 2022; 17(1):e0262299. PubMed ID: 35073349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.