These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2891142)

  • 1. Docosahexaenoic acid metabolism and inherited retinal degenerations.
    Bazan NG; Scott BL
    Prog Clin Biol Res; 1987; 247():103-18. PubMed ID: 2891142
    [No Abstract]   [Full Text] [Related]  

  • 2. The metabolism of omega-3 polyunsaturated fatty acids in the eye: the possible role of docosahexaenoic acid and docosanoids in retinal physiology and ocular pathology.
    Bazan NG
    Prog Clin Biol Res; 1989; 312():95-112. PubMed ID: 2529559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The identification of a new biochemical alteration early in the differentiation of visual cells in inherited retinal degeneration.
    Bazan NG
    Prog Clin Biol Res; 1989; 314():191-215. PubMed ID: 2692027
    [No Abstract]   [Full Text] [Related]  

  • 4. Fatty acid metabolism in normal miniature poodles and those affected with progressive rod-cone degeneration (prcd).
    Wetzel MG; Fahlman C; Maude MB; Alvarez RA; O'Brien PJ; Acland GM; Aguirre GD; Anderson RE
    Prog Clin Biol Res; 1989; 314():427-39. PubMed ID: 2532748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate.
    Organisciak DT; Darrow RM; Jiang YL; Blanks JC
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IRBP and retinyl ester in the rd mutant retina.
    Carter-Dawson L; Alvarez RA; Sperling HG; Bridges CD
    Prog Clin Biol Res; 1985; 190():241-9. PubMed ID: 4048223
    [No Abstract]   [Full Text] [Related]  

  • 7. Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations.
    Anderson RE; Maude MB; McClellan M; Matthes MT; Yasumura D; LaVail MM
    Mol Vis; 2002 Sep; 8():351-8. PubMed ID: 12355064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docosapentaenoic acid is converted to docosahexaenoic acid in the retinas of normal and prcd-affected miniature poodle dogs.
    Alvarez RA; Aguirre GD; Acland GM; Anderson RE
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):402-8. PubMed ID: 8112987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional effects of increasing omega-3 fatty acid intake.
    Carlson SE
    J Pediatr; 1997 Aug; 131(2):173-5. PubMed ID: 9290597
    [No Abstract]   [Full Text] [Related]  

  • 10. A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit: a possible model for cataract formation in tapetoretinal diseases.
    Goosey JD; Tuan WM; Garcia CA
    Invest Ophthalmol Vis Sci; 1984 May; 25(5):608-12. PubMed ID: 6232239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Possible role of altered levels of plasma docosahexaenoic acid in the pathogenesis of retinitis pigmentosa. Preliminary results].
    Simonelli F; Milone A; Iura A; Picardi C; La Banca AM; Cotticelli L; Rinaldi E
    Boll Soc Ital Biol Sper; 1990 Sep; 66(9):893-8. PubMed ID: 2149985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways to photoreceptor cell death in inherited retinal degenerations.
    Pierce EA
    Bioessays; 2001 Jul; 23(7):605-18. PubMed ID: 11462214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing rod photoreceptors from normal and mutant Rd mouse retinas: altered fatty acid composition early in development of the mutant.
    Scott BL; Racz E; Lolley RN; Bazan NG
    J Neurosci Res; 1988; 20(2):202-11. PubMed ID: 3172277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyunsaturated fatty acid metabolism and acetylated low density lipoprotein uptake in J774A.1 cells.
    Shichiri G; Kinoshita M; Saeki Y
    Arch Biochem Biophys; 1993 Jun; 303(2):231-7. PubMed ID: 8099780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice.
    Yazulla S; Studholme KM; Pinto LH
    Vision Res; 1997 Dec; 37(24):3471-82. PubMed ID: 9425524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P23H and S334ter opsin mutations: Increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration.
    Martin RE; Ranchon-Cole I; Brush RS; Williamson CR; Hopkins SA; Li F; Anderson RE
    Mol Vis; 2004 Mar; 10():199-207. PubMed ID: 15064683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats.
    Mizota A; Sato E; Taniai M; Adachi-Usami E; Nishikawa M
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):216-21. PubMed ID: 11133871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspects of the ascorbate protective mechanism in retinal light damage of rats with normal and reduced ROS docosahexaenoic acid.
    Organisciak DT; Wang HM; Noell WK
    Prog Clin Biol Res; 1987; 247():455-68. PubMed ID: 2960984
    [No Abstract]   [Full Text] [Related]  

  • 19. Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice.
    Gao H; Hollyfield JG
    Dev Biol; 1995 May; 169(1):168-84. PubMed ID: 7750636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal remodeling during retinal degeneration.
    Jones BW; Marc RE
    Exp Eye Res; 2005 Aug; 81(2):123-37. PubMed ID: 15916760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.