BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28911502)

  • 1. Degradation of histamine by Bacillus polymyxa isolated from salted fish products.
    Lee YC; Lin CS; Liu FL; Huang TC; Tsai YH
    J Food Drug Anal; 2015 Dec; 23(4):836-844. PubMed ID: 28911502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of histamine and biogenic amines during salted fish fermentation by Bacillus polymyxa as a starter culture.
    Lee YC; Kung HF; Huang CY; Huang TC; Tsai YH
    J Food Drug Anal; 2016 Jan; 24(1):157-163. PubMed ID: 28911399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.
    Kung HF; Lee YC; Huang YL; Huang YR; Su YC; Tsai YH
    J Food Prot; 2017 Oct; 80(10):1682-1688. PubMed ID: 28885051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Histamine from Fish Sauce by
    Rungraeng N; Ohtaguchi K; Chysirichote T
    Food Technol Biotechnol; 2023 Sep; 61(3):294-301. PubMed ID: 38022886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histamine-degrading halophilic bacteria from traditional fish sauce: Characterization of Virgibacillus campisalis TT8.5 for histamine reduction.
    Tran TTH; Nguyen TPA; Pham TD; Nguyen TH; Nguyen TLD; Nguyen TTT; Tran TLH; Giang TK; Bui TTH; Do BC; Nguyen TT; Haltrich D; Nguyen HA
    J Biotechnol; 2023 Mar; 366():46-53. PubMed ID: 36933867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation.
    Zaman MZ; Abu Bakar F; Jinap S; Bakar J
    Int J Food Microbiol; 2011 Jan; 145(1):84-91. PubMed ID: 21183239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling growth and histamine formation of Klebsiella aerogenes TI24 isolated from Indonesian pindang.
    Rachmawati N; Powell SM; Triwibowo R; Nichols DS; Ross T; Tamplin ML
    Int J Food Microbiol; 2022 Feb; 362():109459. PubMed ID: 34861562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk.
    De Jonghe V; Coorevits A; De Block J; Van Coillie E; Grijspeerdt K; Herman L; De Vos P; Heyndrickx M
    Int J Food Microbiol; 2010 Jan; 136(3):318-25. PubMed ID: 19944473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional starter and its genomic insight for histamine degradation in fish sauce.
    Tepkasikul P; Santiyanont P; Booncharoen A; Abhisingha M; Mhuantong W; Chantarasakha K; Pitaksutheepong C; Visessanguan W; Tepaamorndech S
    Food Microbiol; 2022 Jun; 104():103988. PubMed ID: 35287811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of Histamine-Forming Bacteria in Two Kinds of Salted Fish at Town Markets of Guangdong Province of South China.
    Tao Z; Wu X; Liu W; Takahashi H; Xie S; Ohshima C; He Q
    J Food Prot; 2022 Jun; 85(6):956-960. PubMed ID: 35202455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiological and chemical quality of a traditional salted-fermented fish (Hout-Kasef) product of Jazan Region, Saudi Arabia.
    Gassem MA
    Saudi J Biol Sci; 2019 Jan; 26(1):137-140. PubMed ID: 30622417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of histamine-producing bacteria from fermented fish products.
    Moon JS; Kim SY; Cho KJ; Yang SJ; Yoon GM; Eom HJ; Han NS
    J Microbiol; 2013 Dec; 51(6):881-5. PubMed ID: 24385369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the ecology of Bacillus during Daqu incubation, a fermentation starter, using culture-dependent and culture-independent methods.
    Yan Z; Zheng XW; Han BZ; Han JS; Nout MJ; Chen JY
    J Microbiol Biotechnol; 2013 May; 23(5):614-22. PubMed ID: 23648849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of histamine accumulation by novel histamine-degrading species of
    Pashangeh S; Shekarforoush SS; Aminlari M; Hosseinzadeh S; Nizet V; Dahesh S; Rahmdel S
    Food Sci Nutr; 2022 Feb; 10(2):354-362. PubMed ID: 35154673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into halophilic prokaryotes isolated from salting-ripening anchovies (Engraulis anchoita) process focused on histamine-degrading strains.
    Perez S; Murialdo SE; Ameztoy IM; Zaritzky NE; Yeannes MI
    Extremophiles; 2020 Sep; 24(5):787-796. PubMed ID: 32743715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine profile of dried-salted fish sold in local supermarkets of Samar, Philippines.
    Amascual RH; Panganoron HO; Irene EA; Pajarillo ND
    Ital J Food Saf; 2020 Mar; 9(1):8322. PubMed ID: 32300561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry.
    Gupta A; Gupta P; Dhawan A
    Fish Shellfish Immunol; 2014 Dec; 41(2):113-9. PubMed ID: 25160796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-Amylase production by some Bacillus cereus, Bacillus megaterium and Bacillus polymyxa [correction of polymaxa] strains.
    Niziołek S
    Acta Microbiol Pol; 1997; 46(4):357-62. PubMed ID: 9516983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanases and galactanases.
    Araujo A; Ward OP
    J Appl Bacteriol; 1990 Mar; 68(3):253-61. PubMed ID: 2111303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Temperature and Nitrogen Source on Cellulolytic Potential of Microbiota Isolated from Natural Environment.
    Wita A; Białas W; Wilk R; Szychowska K; Czaczyk K
    Pol J Microbiol; 2019; 68(1):105-114. PubMed ID: 31050258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.